Beispiel #1
0
        def get_grid():
            # type: () -> GridType
            time_coa_poly = Poly2DType(Coefs=time_coa_poly_coeffs)
            if collect_info.RadarMode.ModeType == 'SPOTLIGHT':
                time_coa_poly = Poly2DType(Coefs=[[float(time_coa_poly_coeffs[0, 0]), ], ])

            row_win = _stringify(hf['window_function_range'][()])
            if row_win == 'NONE':
                row_win = 'UNIFORM'
            row = DirParamType(
                SS=row_ss,
                Sgn=-1,
                KCtr=2*center_freq/speed_of_light,
                ImpRespBW=2*tx_bandwidth/speed_of_light,
                DeltaKCOAPoly=Poly2DType(Coefs=[[0,]]),
                WgtType=WgtTypeType(WindowName=row_win))
            col_win = _stringify(hf['window_function_azimuth'][()])
            if col_win == 'NONE':
                col_win = 'UNIFORM'
            col = DirParamType(
                SS=col_ss,
                Sgn=-1,
                KCtr=0,
                ImpRespBW=col_imp_res_bw,
                WgtType=WgtTypeType(WindowName=col_win),
                DeltaKCOAPoly=Poly2DType(Coefs=dop_centroid_poly_coeffs*ss_zd_s/col_ss))
            return GridType(
                Type='RGZERO',
                ImagePlane='SLANT',
                TimeCOAPoly=time_coa_poly,
                Row=row,
                Col=col)
Beispiel #2
0
        def get_grid():
            # type: () -> GridType

            # TODO: Future Change Required - JPL states that uniform weighting in data simulated
            #  from UAVSAR is a placeholder, not an accurate description of the data.
            #  At this point, it is not clear what the final weighting description for NISAR
            #  will be.

            gp = hf['/science/LSAR/SLC/metadata/processingInformation/parameters']
            row_wgt = gp['rangeChirpWeighting'][:]
            win_name = 'UNIFORM' if numpy.all(row_wgt == row_wgt[0]) else 'UNKNOWN'
            row = DirParamType(
                Sgn=-1,
                DeltaKCOAPoly=[[0,]],
                WgtFunct=numpy.cast[numpy.float64](row_wgt),
                WgtType=WgtTypeType(WindowName=win_name))

            col_wgt = gp['azimuthChirpWeighting'][:]
            win_name = 'UNIFORM' if numpy.all(col_wgt == col_wgt[0]) else 'UNKNOWN'
            col = DirParamType(
                Sgn=-1,
                KCtr=0,
                WgtFunct=numpy.cast[numpy.float64](col_wgt),
                WgtType=WgtTypeType(WindowName=win_name))

            return GridType(ImagePlane='SLANT', Type='RGZERO', Row=row, Col=col)
Beispiel #3
0
        def get_grid():
            # type: () -> GridType

            img = collect['image']

            image_plane = 'OTHER'
            grid_type = 'PLANE'
            if self._img_desc_tags['product_type'] == 'SLC' and img['algorithm'] != 'backprojection':
                image_plane = 'SLANT'
                grid_type = 'RGZERO'

            coa_time = parse_timestring(img['center_pixel']['center_time'], precision='ns')
            row_imp_rsp_bw = 2*bw/speed_of_light
            row = DirParamType(
                SS=img['pixel_spacing_column'],
                ImpRespBW=row_imp_rsp_bw,
                ImpRespWid=img['range_resolution'],
                KCtr=2*fc/speed_of_light,
                DeltaK1=-0.5*row_imp_rsp_bw,
                DeltaK2=0.5*row_imp_rsp_bw,
                DeltaKCOAPoly=[[0.0, ], ],
                WgtType=WgtTypeType(
                    WindowName=img['range_window']['name'],
                    Parameters=convert_string_dict(img['range_window']['parameters'])))

            # get timecoa value
            timecoa_value = get_seconds(coa_time, start_time)  # TODO: constant?
            # find an approximation for zero doppler spacing - necessarily rough for backprojected images
            # find velocity at coatime
            arp_velocity = position.ARPPoly.derivative_eval(timecoa_value, der_order=1)
            arp_speed = numpy.linalg.norm(arp_velocity)
            col_ss = img['pixel_spacing_row']
            dop_bw =  img['processed_azimuth_bandwidth']
            # ss_zd_s = col_ss/arp_speed

            col = DirParamType(
                SS=col_ss,
                ImpRespWid=img['azimuth_resolution'],
                ImpRespBW=dop_bw/arp_speed,
                KCtr=0,
                WgtType=WgtTypeType(
                    WindowName=img['azimuth_window']['name'],
                    Parameters=convert_string_dict(img['azimuth_window']['parameters'])))

            # TODO: from Wade - account for numeric WgtFunct

            return GridType(
                ImagePlane=image_plane,
                Type=grid_type,
                TimeCOAPoly=[[timecoa_value, ], ],
                Row=row,
                Col=col)
Beispiel #4
0
        def get_grid():  # type: () -> GridType
            def get_wgt_type(weight_name, coefficient, direction):
                if weight_name == 'GENERAL_COSINE':
                    # probably only for kompsat?
                    weight_name = 'HAMMING'
                    coefficient = 1 - coefficient
                if coefficient is None:
                    params = None
                else:
                    params = {'COEFFICIENT': '{0:0.17E}'.format(coefficient)}
                out = WgtTypeType(WindowName=weight_name, Parameters=params)
                if weight_name != 'HAMMING':
                    logger.warning(
                        'Got unexpected weight scheme {} for {}.\n\t'
                        'The weighting will not be properly populated.'.format(
                            weight_name, direction))
                return out

            if re.sub(
                    ' ', '',
                    h5_dict['Projection ID']).upper() == 'SLANTRANGE/AZIMUTH':
                image_plane = 'SLANT'
                gr_type = 'RGZERO'
            else:
                image_plane = 'GROUND'
                gr_type = 'PLANE'
            # Row
            row_window_name = h5_dict[
                'Range Focusing Weighting Function'].rstrip().upper()
            row_coefficient = h5_dict.get(
                'Range Focusing Weighting Coefficient', None)
            row_weight = get_wgt_type(row_window_name, row_coefficient, 'Row')
            row = DirParamType(Sgn=-1,
                               KCtr=2 * center_frequency / speed_of_light,
                               DeltaKCOAPoly=Poly2DType(Coefs=[
                                   [
                                       0,
                                   ],
                               ]),
                               WgtType=row_weight)
            # Col
            col_window_name = h5_dict[
                'Azimuth Focusing Weighting Function'].rstrip().upper()
            col_coefficient = h5_dict.get(
                'Azimuth Focusing Weighting Coefficient', None)
            col_weight = get_wgt_type(col_window_name, col_coefficient, 'Col')
            col = DirParamType(Sgn=-1, KCtr=0, WgtType=col_weight)
            return GridType(ImagePlane=image_plane,
                            Type=gr_type,
                            Row=row,
                            Col=col)
Beispiel #5
0
    def try_ACFT():
        if tres is None:
            return
        tre = tres['ACFTA']
        if tre is None:
            tre = tres['ACFTB']
        if tre is None:
            return
        acft = tre.DATA

        sensor_id = acft.SENSOR_ID.strip()
        if len(sensor_id) > 1:
            if the_sicd.CollectionInfo is None:
                the_sicd.CollectionInfo = CollectionInfoType(
                    CollectorName=sensor_id)
            elif the_sicd.CollectionInfo.CollectorName is None:
                the_sicd.CollectionInfo.CollectorName = sensor_id

        row_ss = float(acft.ROW_SPACING)
        col_ss = float(acft.COL_SPACING)

        if hasattr(acft, 'ROW_SPACING_UNITS') and acft.ROW_SPACING_UNITS.strip(
        ).lower() == 'f':
            row_ss *= foot
        if hasattr(acft, 'COL_SPACING_UNITS') and acft.COL_SPACING_UNITS.strip(
        ).lower() == 'f':
            col_ss *= foot

        # NB: these values are actually ground plane values, and should be
        # corrected to slant plane if possible
        if the_sicd.SCPCOA is not None:
            if the_sicd.SCPCOA.GrazeAng is not None:
                col_ss *= numpy.cos(numpy.deg2rad(the_sicd.SCPCOA.GrazeAng))
            if the_sicd.SCPCOA.TwistAng is not None:
                row_ss *= numpy.cos(numpy.deg2rad(the_sicd.SCPCOA.TwistAng))

        if the_sicd.Grid is None:
            the_sicd.Grid = GridType(Row=DirParamType(SS=row_ss),
                                     Col=DirParamType(SS=col_ss))
            return

        if the_sicd.Grid.Row is None:
            the_sicd.Grid.Row = DirParamType(SS=row_ss)
        elif the_sicd.Grid.Row.SS is None:
            the_sicd.Grid.Row.SS = row_ss

        if the_sicd.Grid.Col is None:
            the_sicd.Grid.Col = DirParamType(SS=col_ss)
        elif the_sicd.Grid.Col.SS is None:
            the_sicd.Grid.Col.SS = col_ss
Beispiel #6
0
    def set_uvects(row_unit, col_unit):
        if the_sicd.Grid is None:
            the_sicd.Grid = GridType(Row=DirParamType(UVectECF=row_unit),
                                     Col=DirParamType(UVectECF=col_unit))
            return

        if the_sicd.Grid.Row is None:
            the_sicd.Grid.Row = DirParamType(UVectECF=row_unit)
        elif the_sicd.Grid.Row.UVectECF is None:
            the_sicd.Grid.Row.UVectECF = row_unit

        if the_sicd.Grid.Col is None:
            the_sicd.Grid.Col = DirParamType(UVectECF=col_unit)
        elif the_sicd.Grid.Col.UVectECF is None:
            the_sicd.Grid.Col.UVectECF = col_unit
Beispiel #7
0
    def _get_grid_row(self):
        """
        Gets the Grid.Row metadata.

        Returns
        -------
        DirParamType
        """

        center_freq = self._get_center_frequency()
        if self.generation == 'RS2':
            row_ss = float(
                self._find('./imageAttributes'
                           '/rasterAttributes'
                           '/sampledPixelSpacing').text)
        elif self.generation == 'RCM':
            row_ss = float(
                self._find('./imageReferenceAttributes'
                           '/rasterAttributes'
                           '/sampledPixelSpacing').text)
        else:
            raise ValueError('unhandled generation {}'.format(self.generation))

        row_irbw = 2 * float(
            self._find('./imageGenerationParameters'
                       '/sarProcessingInformation'
                       '/totalProcessedRangeBandwidth').text) / speed_of_light
        row_wgt_type = WgtTypeType(
            WindowName=self._find('./imageGenerationParameters'
                                  '/sarProcessingInformation'
                                  '/rangeWindow/windowName').text.upper())
        if row_wgt_type.WindowName == 'KAISER':
            row_wgt_type.Parameters = {
                'BETA':
                self._find('./imageGenerationParameters'
                           '/sarProcessingInformation'
                           '/rangeWindow/windowCoefficient').text
            }
        return DirParamType(SS=row_ss,
                            ImpRespBW=row_irbw,
                            Sgn=-1,
                            KCtr=2 * center_freq / speed_of_light,
                            DeltaKCOAPoly=Poly2DType(Coefs=((0, ), )),
                            WgtType=row_wgt_type)
Beispiel #8
0
    def _get_grid_col(self):
        """
        Gets the Grid.Col metadata.

        Returns
        -------
        DirParamType
        """

        col_wgt_type = WgtTypeType(
            WindowName=self._find('./imageGenerationParameters'
                                  '/sarProcessingInformation'
                                  '/azimuthWindow/windowName').text.upper())
        if col_wgt_type.WindowName == 'KAISER':
            col_wgt_type.Parameters = {
                'BETA':
                self._find('./imageGenerationParameters'
                           '/sarProcessingInformation'
                           '/azimuthWindow/windowCoefficient').text
            }

        return DirParamType(Sgn=-1, KCtr=0, WgtType=col_wgt_type)
Beispiel #9
0
    def try_CMETAA():
        tre = None if tres is None else tres['CMETAA']  # type: CMETAA
        if tre is None:
            return

        cmetaa = tre.DATA

        if the_sicd.GeoData is None:
            the_sicd.GeoData = GeoDataType()
        if the_sicd.SCPCOA is None:
            the_sicd.SCPCOA = SCPCOAType()
        if the_sicd.Grid is None:
            the_sicd.Grid = GridType()
        if the_sicd.Timeline is None:
            the_sicd.Timeline = TimelineType()
        if the_sicd.RadarCollection is None:
            the_sicd.RadarCollection = RadarCollectionType()
        if the_sicd.ImageFormation is None:
            the_sicd.ImageFormation = ImageFormationType()

        the_sicd.SCPCOA.SCPTime = 0.5*float(cmetaa.WF_CDP)
        the_sicd.GeoData.SCP = SCPType(ECF=tre.get_scp())
        the_sicd.SCPCOA.ARPPos = tre.get_arp()

        the_sicd.SCPCOA.SideOfTrack = cmetaa.CG_LD.strip().upper()
        the_sicd.SCPCOA.SlantRange = float(cmetaa.CG_SRAC)
        the_sicd.SCPCOA.DopplerConeAng = float(cmetaa.CG_CAAC)
        the_sicd.SCPCOA.GrazeAng = float(cmetaa.CG_GAAC)
        the_sicd.SCPCOA.IncidenceAng = 90 - float(cmetaa.CG_GAAC)
        if hasattr(cmetaa, 'CG_TILT'):
            the_sicd.SCPCOA.TwistAng = float(cmetaa.CG_TILT)
        if hasattr(cmetaa, 'CG_SLOPE'):
            the_sicd.SCPCOA.SlopeAng = float(cmetaa.CG_SLOPE)

        the_sicd.ImageData.SCPPixel = [int(cmetaa.IF_DC_IS_COL), int(cmetaa.IF_DC_IS_ROW)]
        img_corners = tre.get_image_corners()
        if img_corners is not None:
            the_sicd.GeoData.ImageCorners = img_corners

        if cmetaa.CMPLX_SIGNAL_PLANE.upper() == 'S':
            the_sicd.Grid.ImagePlane = 'SLANT'
        elif cmetaa.CMPLX_SIGNAL_PLANE.upper() == 'G':
            the_sicd.Grid.ImagePlane = 'GROUND'
        else:
            logger.warning(
                'Got unexpected CMPLX_SIGNAL_PLANE value {},\n\t'
                'setting ImagePlane to SLANT'.format(cmetaa.CMPLX_SIGNAL_PLANE))

        the_sicd.Grid.Row = DirParamType(
            SS=float(cmetaa.IF_RSS),
            ImpRespWid=float(cmetaa.IF_RGRES),
            Sgn=1 if cmetaa.IF_RFFTS.strip() == '-' else -1,  # opposite sign convention
            ImpRespBW=float(cmetaa.IF_RFFT_SAMP)/(float(cmetaa.IF_RSS)*float(cmetaa.IF_RFFT_TOT)))
        the_sicd.Grid.Col = DirParamType(
            SS=float(cmetaa.IF_AZSS),
            ImpRespWid=float(cmetaa.IF_AZRES),
            Sgn=1 if cmetaa.IF_AFFTS.strip() == '-' else -1,  # opposite sign convention
            ImpRespBW=float(cmetaa.IF_AZFFT_SAMP)/(float(cmetaa.IF_AZSS)*float(cmetaa.IF_AZFFT_TOT)))
        cmplx_weight = cmetaa.CMPLX_WEIGHT.strip().upper()
        if cmplx_weight == 'UWT':
            the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='UNIFORM')
            the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='UNIFORM')
        elif cmplx_weight == 'HMW':
            the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HAMMING')
            the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HAMMING')
        elif cmplx_weight == 'HNW':
            the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HANNING')
            the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HANNING')
        elif cmplx_weight == 'TAY':
            the_sicd.Grid.Row.WgtType = WgtTypeType(
                WindowName='TAYLOR',
                Parameters={
                    'SLL': '-{0:d}'.format(int(cmetaa.CMPLX_RNG_SLL)),
                    'NBAR': '{0:d}'.format(int(cmetaa.CMPLX_RNG_TAY_NBAR))})
            the_sicd.Grid.Col.WgtType = WgtTypeType(
                WindowName='TAYLOR',
                Parameters={
                    'SLL': '-{0:d}'.format(int(cmetaa.CMPLX_AZ_SLL)),
                    'NBAR': '{0:d}'.format(int(cmetaa.CMPLX_AZ_TAY_NBAR))})
        else:
            logger.warning(
                'Got unsupported CMPLX_WEIGHT value {}.\n\tThe resulting SICD will '
                'not have valid weight array populated'.format(cmplx_weight))
        the_sicd.Grid.Row.define_weight_function()
        the_sicd.Grid.Col.define_weight_function()

        # noinspection PyBroadException
        try:
            date_str = cmetaa.T_UTC_YYYYMMMDD
            time_str = cmetaa.T_HHMMSSUTC
            date_time = _iso_date_format.format(
                date_str[:4], date_str[4:6], date_str[6:8],
                time_str[:2], time_str[2:4], time_str[4:6])
            the_sicd.Timeline.CollectStart = numpy.datetime64(date_time, 'us')
        except Exception:
            logger.info('Failed extracting start time from CMETAA')
            pass
        the_sicd.Timeline.CollectDuration = float(cmetaa.WF_CDP)
        the_sicd.Timeline.IPP = [
            IPPSetType(TStart=0,
                       TEnd=float(cmetaa.WF_CDP),
                       IPPStart=0,
                       IPPEnd=numpy.floor(float(cmetaa.WF_CDP)*float(cmetaa.WF_PRF)),
                       IPPPoly=[0, float(cmetaa.WF_PRF)])]

        the_sicd.RadarCollection.TxFrequency = TxFrequencyType(
            Min=float(cmetaa.WF_SRTFR),
            Max=float(cmetaa.WF_ENDFR))
        the_sicd.RadarCollection.TxPolarization = cmetaa.POL_TR.upper()
        the_sicd.RadarCollection.Waveform = [WaveformParametersType(
            TxPulseLength=float(cmetaa.WF_WIDTH),
            TxRFBandwidth=float(cmetaa.WF_BW),
            TxFreqStart=float(cmetaa.WF_SRTFR),
            TxFMRate=float(cmetaa.WF_CHRPRT)*1e12)]
        tx_rcv_pol = '{}:{}'.format(cmetaa.POL_TR.upper(), cmetaa.POL_RE.upper())
        the_sicd.RadarCollection.RcvChannels = [
            ChanParametersType(TxRcvPolarization=tx_rcv_pol)]

        the_sicd.ImageFormation.TxRcvPolarizationProc = tx_rcv_pol
        if_process = cmetaa.IF_PROCESS.strip().upper()
        if if_process == 'PF':
            the_sicd.ImageFormation.ImageFormAlgo = 'PFA'
            scp_ecf = tre.get_scp()
            fpn_ned = numpy.array(
                [float(cmetaa.CG_FPNUV_X), float(cmetaa.CG_FPNUV_Y), float(cmetaa.CG_FPNUV_Z)], dtype='float64')
            ipn_ned = numpy.array(
                [float(cmetaa.CG_IDPNUVX), float(cmetaa.CG_IDPNUVY), float(cmetaa.CG_IDPNUVZ)], dtype='float64')
            fpn_ecf = ned_to_ecf(fpn_ned, scp_ecf, absolute_coords=False)
            ipn_ecf = ned_to_ecf(ipn_ned, scp_ecf, absolute_coords=False)
            the_sicd.PFA = PFAType(FPN=fpn_ecf, IPN=ipn_ecf)
        elif if_process in ['RM', 'CD']:
            the_sicd.ImageFormation.ImageFormAlgo = 'RMA'

        # the remainder of this is guesswork to define required fields
        the_sicd.ImageFormation.TStartProc = 0  # guess work
        the_sicd.ImageFormation.TEndProc = float(cmetaa.WF_CDP)
        the_sicd.ImageFormation.TxFrequencyProc = TxFrequencyProcType(
            MinProc=float(cmetaa.WF_SRTFR), MaxProc=float(cmetaa.WF_ENDFR))
        # all remaining guess work
        the_sicd.ImageFormation.STBeamComp = 'NO'
        the_sicd.ImageFormation.ImageBeamComp = 'SV' if cmetaa.IF_BEAM_COMP[0] == 'Y' else 'NO'
        the_sicd.ImageFormation.AzAutofocus = 'NO' if cmetaa.AF_TYPE[0] == 'N' else 'SV'
        the_sicd.ImageFormation.RgAutofocus = 'NO'
Beispiel #10
0
        def get_grid():
            # type: () -> GridType

            def get_weight(window_dict):
                window_name = window_dict['name']
                if window_name.lower() == 'rectangular':
                    return WgtTypeType(WindowName='UNIFORM')
                else:
                    # TODO: what is the proper interpretation for the avci-nacaroglu window?
                    return WgtTypeType(WindowName=window_name,
                                       Parameters=convert_string_dict(
                                           window_dict['parameters']))

            img = collect['image']
            img_geometry = img['image_geometry']
            if img_geometry.get('type', None) == 'slant_plane':
                image_plane = 'SLANT'
            else:
                image_plane = 'OTHER'

            grid_type = 'PLANE'
            if self._img_desc_tags['product_type'] == 'SLC' and img[
                    'algorithm'] != 'backprojection':
                grid_type = 'RGZERO'

            coa_time = parse_timestring(img['center_pixel']['center_time'],
                                        precision='ns')
            row_imp_rsp_bw = 2 * bw / speed_of_light
            row = DirParamType(SS=img['pixel_spacing_column'],
                               Sgn=-1,
                               ImpRespBW=row_imp_rsp_bw,
                               ImpRespWid=img['range_resolution'],
                               KCtr=2 * fc / speed_of_light,
                               DeltaK1=-0.5 * row_imp_rsp_bw,
                               DeltaK2=0.5 * row_imp_rsp_bw,
                               DeltaKCOAPoly=[
                                   [
                                       0.0,
                                   ],
                               ],
                               WgtType=get_weight(img['range_window']))

            # get timecoa value
            timecoa_value = get_seconds(
                coa_time, start_time)  # TODO: this is not generally correct
            # find an approximation for zero doppler spacing - necessarily rough for backprojected images
            # find velocity at coatime
            arp_velocity = position.ARPPoly.derivative_eval(timecoa_value,
                                                            der_order=1)
            arp_speed = numpy.linalg.norm(arp_velocity)
            col_ss = img['pixel_spacing_row']
            dop_bw = img['processed_azimuth_bandwidth']
            # ss_zd_s = col_ss/arp_speed

            col = DirParamType(SS=col_ss,
                               Sgn=-1,
                               ImpRespWid=img['azimuth_resolution'],
                               ImpRespBW=dop_bw / arp_speed,
                               KCtr=0,
                               WgtType=get_weight(img['azimuth_window']))

            # TODO:
            #   column deltakcoa poly - it's in there at ["image"]["frequency_doppler_centroid_polynomial"]
            #   weight functions?

            return GridType(ImagePlane=image_plane,
                            Type=grid_type,
                            TimeCOAPoly=[
                                [
                                    timecoa_value,
                                ],
                            ],
                            Row=row,
                            Col=col)
Beispiel #11
0
        def get_grid():
            # type: () -> GridType

            def get_weight(window_dict):
                window_name = window_dict['name']
                if window_name.lower() == 'rectangular':
                    return WgtTypeType(WindowName='UNIFORM'), None
                elif window_name.lower() == 'avci-nacaroglu':
                    return WgtTypeType(
                        WindowName=window_name.upper(),
                        Parameters=convert_string_dict(window_dict['parameters'])), \
                           avci_nacaroglu_window(64, alpha=window_dict['parameters']['alpha'])
                else:
                    return WgtTypeType(WindowName=window_name,
                                       Parameters=convert_string_dict(
                                           window_dict['parameters'])), None

            image_plane = 'SLANT'
            grid_type = 'RGZERO'

            coa_time = parse_timestring(img['center_pixel']['center_time'],
                                        precision='ns')
            row_bw = img.get('processed_range_bandwidth', bw)
            row_imp_rsp_bw = 2 * row_bw / speed_of_light
            row_wgt, row_wgt_funct = get_weight(img['range_window'])
            row = DirParamType(SS=img['image_geometry']['delta_range_sample'],
                               Sgn=-1,
                               ImpRespBW=row_imp_rsp_bw,
                               ImpRespWid=img['range_resolution'],
                               KCtr=2 * fc / speed_of_light,
                               DeltaK1=-0.5 * row_imp_rsp_bw,
                               DeltaK2=0.5 * row_imp_rsp_bw,
                               DeltaKCOAPoly=[
                                   [
                                       0.0,
                                   ],
                               ],
                               WgtFunct=row_wgt_funct,
                               WgtType=row_wgt)

            # get timecoa value
            timecoa_value = get_seconds(coa_time, start_time)
            # find an approximation for zero doppler spacing - necessarily rough for backprojected images
            col_ss = img['pixel_spacing_row']
            dop_bw = img['processed_azimuth_bandwidth']

            col_wgt, col_wgt_funct = get_weight(img['azimuth_window'])
            col = DirParamType(SS=col_ss,
                               Sgn=-1,
                               ImpRespWid=img['azimuth_resolution'],
                               ImpRespBW=dop_bw * abs(ss_zd_s) / col_ss,
                               KCtr=0,
                               WgtFunct=col_wgt_funct,
                               WgtType=col_wgt)

            # TODO:
            #   column deltakcoa poly - it's in there at ["image"]["frequency_doppler_centroid_polynomial"]

            return GridType(ImagePlane=image_plane,
                            Type=grid_type,
                            TimeCOAPoly=[
                                [
                                    timecoa_value,
                                ],
                            ],
                            Row=row,
                            Col=col)
Beispiel #12
0
    def try_CMETAA():
        tre = None if tres is None else tres['CMETAA']
        if tre is None:
            return
        cmetaa = tre.DATA

        if the_sicd.GeoData is None:
            the_sicd.GeoData = GeoDataType()
        if the_sicd.SCPCOA is None:
            the_sicd.SCPCOA = SCPCOAType()
        if the_sicd.Grid is None:
            the_sicd.Grid = GridType()
        if the_sicd.Timeline is None:
            the_sicd.Timeline = TimelineType()
        if the_sicd.RadarCollection is None:
            the_sicd.RadarCollection = RadarCollectionType()
        if the_sicd.ImageFormation is None:
            the_sicd.ImageFormation = ImageFormationType()

        the_sicd.SCPCOA.SCPTime = 0.5 * cmetaa.WF_CDP
        if cmetaa.CG_MODEL == 'ECEF':
            the_sicd.GeoData.SCP = SCPType(ECF=[
                cmetaa.CG_SCECN_X, cmetaa.CG_SCECN_Y, cmetaa.cmetaa.CG_SCECN_Z
            ])
            the_sicd.SCPCOA.ARPPos = [
                cmetaa.CG_APCEN_X, cmetaa.CG_APCEN_Y, cmetaa.CG_APCEN_Z
            ]
        elif cmetaa.CG_MODEL == 'WGS84':
            the_sicd.GeoData.SCP = SCPType(LLH=[
                cmetaa.CG_SCECN_X, cmetaa.CG_SCECN_Y, cmetaa.cmetaa.CG_SCECN_Z
            ])
            the_sicd.SCPCOA.ARPPos = geodetic_to_ecf(
                [cmetaa.CG_APCEN_X, cmetaa.CG_APCEN_Y, cmetaa.CG_APCEN_Z])

        the_sicd.SCPCOA.SideOfTrack = cmetaa.CG_LD
        the_sicd.SCPCOA.SlantRange = cmetaa.CG_SRAC
        the_sicd.SCPCOA.DopplerConeAng = cmetaa.CG_CAAC
        the_sicd.SCPCOA.GrazeAng = cmetaa.CG_GAAC
        the_sicd.SCPCOA.IncidenceAng = 90 - cmetaa.CG_GAAC
        if hasattr(cmetaa, 'CG_TILT'):
            the_sicd.SCPCOA.TwistAng = cmetaa.CG_TILT
        if hasattr(cmetaa, 'CG_SLOPE'):
            the_sicd.SCPCOA.SlopeAng = cmetaa.CG_SLOPE

        the_sicd.ImageData.SCPPixel = [
            cmetaa.IF_DC_IS_COL, cmetaa.IF_DC_IS_ROW
        ]
        if cmetaa.CG_MAP_TYPE == 'GEOD':
            the_sicd.GeoData.ImageCorners = [
                [cmetaa.CG_PATCH_LTCORUL, cmetaa.CG_PATCH_LGCORUL],
                [cmetaa.CG_PATCH_LTCORUR, cmetaa.CG_PATCH_LGCORUR],
                [cmetaa.CG_PATCH_LTCORLR, cmetaa.CG_PATCH_LGCORLR],
                [cmetaa.CG_PATCH_LTCORLL, cmetaa.CG_PATCH_LNGCOLL]
            ]
        if cmetaa.CMPLX_SIGNAL_PLANE[0].upper() == 'S':
            the_sicd.Grid.ImagePlane = 'SLANT'
        elif cmetaa.CMPLX_SIGNAL_PLANE[0].upper() == 'G':
            the_sicd.Grid.ImagePlane = 'GROUND'
        the_sicd.Grid.Row = DirParamType(
            SS=cmetaa.IF_RSS,
            ImpRespWid=cmetaa.IF_RGRES,
            Sgn=1
            if cmetaa.IF_RFFTS == '-' else -1,  # opposite sign convention
            ImpRespBW=cmetaa.IF_RFFT_SAMP /
            (cmetaa.IF_RSS * cmetaa.IF_RFFT_TOT))
        the_sicd.Grid.Col = DirParamType(
            SS=cmetaa.IF_AZSS,
            ImpRespWid=cmetaa.IF_AZRES,
            Sgn=1
            if cmetaa.IF_AFFTS == '-' else -1,  # opposite sign convention
            ImpRespBW=cmetaa.IF_AZFFT_SAMP /
            (cmetaa.IF_AZSS * cmetaa.IF_AZFFT_TOT))
        cmplx_weight = cmetaa.CMPLX_WEIGHT
        if cmplx_weight == 'UWT':
            the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='UNIFORM')
            the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='UNIFORM')
        elif cmplx_weight == 'HMW':
            the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HAMMING')
            the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HAMMING')
        elif cmplx_weight == 'HNW':
            the_sicd.Grid.Row.WgtType = WgtTypeType(WindowName='HANNING')
            the_sicd.Grid.Col.WgtType = WgtTypeType(WindowName='HANNING')
        elif cmplx_weight == 'TAY':
            the_sicd.Grid.Row.WgtType = WgtTypeType(
                WindowName='TAYLOR',
                Parameters={
                    'SLL': '{0:0.16G}'.format(-cmetaa.CMPLX_RNG_SLL),
                    'NBAR': '{0:0.16G}'.format(cmetaa.CMPLX_RNG_TAY_NBAR)
                })
            the_sicd.Grid.Col.WgtType = WgtTypeType(
                WindowName='TAYLOR',
                Parameters={
                    'SLL': '{0:0.16G}'.format(-cmetaa.CMPLX_AZ_SLL),
                    'NBAR': '{0:0.16G}'.format(cmetaa.CMPLX_AZ_TAY_NBAR)
                })
        the_sicd.Grid.Row.define_weight_function()
        the_sicd.Grid.Col.define_weight_function()

        # noinspection PyBroadException
        try:
            date_str = cmetaa.T_UTC_YYYYMMMDD
            time_str = cmetaa.T_HHMMSSUTC
            date_time = '{}-{}-{}T{}:{}:{}Z'.format(
                date_str[:4], date_str[4:6], date_str[6:8], time_str[:2],
                time_str[2:4], time_str[4:6])
            the_sicd.Timeline.CollectStart = numpy.datetime64(date_time, 'us')
        except:
            pass
        the_sicd.Timeline.CollectDuration = cmetaa.WF_CDP
        the_sicd.Timeline.IPP = [
            IPPSetType(TStart=0,
                       TEnd=cmetaa.WF_CDP,
                       IPPStart=0,
                       IPPEnd=numpy.floor(cmetaa.WF_CDP * cmetaa.WF_PRF),
                       IPPPoly=[0, cmetaa.WF_PRF])
        ]

        the_sicd.RadarCollection.TxFrequency = TxFrequencyType(
            Min=cmetaa.WF_SRTFR, Max=cmetaa.WF_ENDFR)
        the_sicd.RadarCollection.TxPolarization = cmetaa.POL_TR.upper()
        the_sicd.RadarCollection.Waveform = [
            WaveformParametersType(TxPulseLength=cmetaa.WF_WIDTH,
                                   TxRFBandwidth=cmetaa.WF_BW,
                                   TxFreqStart=cmetaa.WF_SRTFR,
                                   TxFMRate=cmetaa.WF_CHRPRT * 1e12)
        ]
        tx_rcv_pol = '{}:{}'.format(cmetaa.POL_TR.upper(),
                                    cmetaa.POL_RE.upper())
        the_sicd.RadarCollection.RcvChannels = [
            ChanParametersType(TxRcvPolarization=tx_rcv_pol)
        ]

        the_sicd.ImageFormation.TxRcvPolarizationProc = tx_rcv_pol
        if_process = cmetaa.IF_PROCESS
        if if_process == 'PF':
            the_sicd.ImageFormation.ImageFormAlgo = 'PFA'
            scp_ecf = the_sicd.GeoData.SCP.ECF.get_array()
            fpn_ned = numpy.array(
                [cmetaa.CG_FPNUV_X, cmetaa.CG_FPNUV_Y, cmetaa.CG_FPNUV_Z],
                dtype='float64')
            ipn_ned = numpy.array(
                [cmetaa.CG_IDPNUVX, cmetaa.CG_IDPNUVY, cmetaa.CG_IDPNUVZ],
                dtype='float64')
            fpn_ecf = ned_to_ecf(fpn_ned, scp_ecf, absolute_coords=False)
            ipn_ecf = ned_to_ecf(ipn_ned, scp_ecf, absolute_coords=False)
            the_sicd.PFA = PFAType(FPN=fpn_ecf, IPN=ipn_ecf)
        elif if_process in ['RM', 'CD']:
            the_sicd.ImageFormation.ImageFormAlgo = 'RMA'

        # the remainder of this is guesswork to define required fields
        the_sicd.ImageFormation.TStartProc = 0  # guess work
        the_sicd.ImageFormation.TEndProc = cmetaa.WF_CDP
        the_sicd.ImageFormation.TxFrequencyProc = TxFrequencyProcType(
            MinProc=cmetaa.WF_SRTFR, MaxProc=cmetaa.WF_ENDFR)
        # all remaining guess work
        the_sicd.ImageFormation.STBeamComp = 'NO'
        the_sicd.ImageFormation.ImageBeamComp = 'SV' if cmetaa.IF_BEAM_COMP[
            0] == 'Y' else 'NO'
        the_sicd.ImageFormation.AzAutofocus = 'NO' if cmetaa.AF_TYPE[
            0] == 'N' else 'SV'
        the_sicd.ImageFormation.RgAutofocus = 'NO'