Beispiel #1
0
def export_cube():
    cube = load_pickle(RegionPairTiming.cube_filename)
    README = """\
d_mu:
mu(r2)-mu(r1) for every gene and region pair. 
Dimensions: <n-genes> X <n-regions> X <n-regions>

combined_std: 
The combined standard deviation of the two change distributions.
std = sqrt(0.5*(std1^2 + std2^2))
Dimensions: <n-genes> X <n-regions> X <n-regions>

score:
The d' for the two change distributions. Equal to d_mu ./ combined_std.
Dimensions: <n-genes> X <n-regions> X <n-regions>

genes: 
Gene names for the genes represented in other arrays

regions: 
Region names for the regions represented in other arrays

age_scaler: 
The scaling used for ages (i.e. 'log' means x' = log(x + 38/52))
"""
    mdict = dict(
        README_CUBE=README,
        genes=list_of_strings_to_matlab_cell_array(cube.genes),
        regions=list_of_strings_to_matlab_cell_array(cube.regions),
        age_scaler=scalers.unify(cube.age_scaler).cache_name(),
        d_mu=cube.d_mu,
        combined_std=cube.std,
        scores=cube.d_mu / cube.std,
    )
    save_matfile(mdict, join(results_dir(), 'export', 'cube.mat'))
def export_cube():
    cube = load_pickle(RegionPairTiming.cube_filename)
    README = """\
d_mu:
mu(r2)-mu(r1) for every gene and region pair. 
Dimensions: <n-genes> X <n-regions> X <n-regions>

combined_std: 
The combined standard deviation of the two change distributions.
std = sqrt(0.5*(std1^2 + std2^2))
Dimensions: <n-genes> X <n-regions> X <n-regions>

score:
The d' for the two change distributions. Equal to d_mu ./ combined_std.
Dimensions: <n-genes> X <n-regions> X <n-regions>

genes: 
Gene names for the genes represented in other arrays

regions: 
Region names for the regions represented in other arrays

age_scaler: 
The scaling used for ages (i.e. 'log' means x' = log(x + 38/52))
"""
    mdict = dict(
        README_CUBE = README,
        genes = list_of_strings_to_matlab_cell_array(cube.genes),
        regions = list_of_strings_to_matlab_cell_array(cube.regions),
        age_scaler = scalers.unify(cube.age_scaler).cache_name(),
        d_mu = cube.d_mu,
        combined_std = cube.std,
        scores = cube.d_mu / cube.std,
    )
    save_matfile(mdict, join(results_dir(), 'export', 'cube.mat'))
Beispiel #3
0
 def scaled(self, scaler):
     import scalers
     scaler = scalers.unify(scaler)  # handle None
     return DevStage(
         num=self.num,
         name=self.name,
         short_name=self.short_name,
         from_age=scaler.scale(self.from_age),
         to_age=scaler.scale(self.to_age),
     )
Beispiel #4
0
 def scaled(self, scaler):
     import scalers
     scaler = scalers.unify(scaler) # handle None
     return DevStage(
         num = self.num,
         name = self.name,
         short_name = self.short_name,
         from_age = scaler.scale(self.from_age),
         to_age = scaler.scale(self.to_age),
     )
Beispiel #5
0
def add_age_ticks(ax, age_scaler, fontsize=None):
    if fontsize is None:
        fontsize = cfg.fontsize
        
    # set the development stages as x labels
    stages = [stage.scaled(age_scaler) for stage in dev_stages]
    ax.set_xticks([stage.central_age for stage in stages])
    ax.set_xticklabels([stage.short_name for stage in stages], fontsize=fontsize, fontstretch='condensed', rotation=90)    
    
    # mark birth time with a vertical line
    ymin, ymax = ax.get_ylim()
    birth_age = scalers.unify(age_scaler).scale(0)
    ax.plot([birth_age, birth_age], [ymin, ymax], '--', color='0.85')
def export_timing_info_for_all_fits(data, fitter, fits):
    change_dist = compute_timing_info_for_all_fits(data, fitter, fits)
    README = """\
mu:
The mean age of the change distribution for given gene and region.
Dimensions: <n-genes> X <n-regions>

std:
The standard deviation of the change distribution for given gene and region.
Dimensions: <n-genes> X <n-regions>

genes: 
Gene names for the genes represented in other arrays

weights:
The change distributions for each gene and region.
Dimensions: <n-genes> X <n-regions> X <n-bins>

bin_centers:
The ages for the center of each bin used in calculating the histogram in "weights".
Dimensions: <n-bins> X 1

bin_edges:
The edges of the bins used in calculating the change histogram.
(centers can be calculated from the bin_edges, but it's convenient to have it pre-calculated)
Dimensions: <n-bins + 1> X 1

regions: 
Region names for the regions represented in other arrays

age_scaler: 
The scaling used for ages (i.e. 'log' means x' = log(x + 38/52))
"""
    mdict = dict(
        README_CHANGE_DISTRIBUTIONS=README,
        genes=list_of_strings_to_matlab_cell_array(change_dist.genes),
        regions=list_of_strings_to_matlab_cell_array(change_dist.regions),
        age_scaler=scalers.unify(change_dist.age_scaler).cache_name(),
        mu=change_dist.mu,
        std=change_dist.std,
        bin_edges=change_dist.bin_edges,
        bin_centers=change_dist.bin_centers,
        weights=change_dist.weights,
    )
    filename = join(
        cache_dir(),
        fit_results_relative_path(data, fitter) + '-change-dist.mat')
    save_matfile(mdict, filename)
Beispiel #7
0
def add_age_ticks(ax, age_scaler, fontsize=None):
    if fontsize is None:
        fontsize = cfg.fontsize

    # set the development stages as x labels
    stages = [stage.scaled(age_scaler) for stage in dev_stages]
    ax.set_xticks([stage.central_age for stage in stages])
    ax.set_xticklabels([stage.short_name for stage in stages],
                       fontsize=fontsize,
                       fontstretch='condensed',
                       rotation=90)

    # mark birth time with a vertical line
    ymin, ymax = ax.get_ylim()
    birth_age = scalers.unify(age_scaler).scale(0)
    ax.plot([birth_age, birth_age], [ymin, ymax], '--', color='0.85')
def export_timing_info_for_all_fits(data, fitter, fits):
    change_dist = compute_timing_info_for_all_fits(data, fitter, fits)
    README = """\
mu:
The mean age of the change distribution for given gene and region.
Dimensions: <n-genes> X <n-regions>

std:
The standard deviation of the change distribution for given gene and region.
Dimensions: <n-genes> X <n-regions>

genes: 
Gene names for the genes represented in other arrays

weights:
The change distributions for each gene and region.
Dimensions: <n-genes> X <n-regions> X <n-bins>

bin_centers:
The ages for the center of each bin used in calculating the histogram in "weights".
Dimensions: <n-bins> X 1

bin_edges:
The edges of the bins used in calculating the change histogram.
(centers can be calculated from the bin_edges, but it's convenient to have it pre-calculated)
Dimensions: <n-bins + 1> X 1

regions: 
Region names for the regions represented in other arrays

age_scaler: 
The scaling used for ages (i.e. 'log' means x' = log(x + 38/52))
"""
    mdict = dict(
        README_CHANGE_DISTRIBUTIONS = README,
        genes = list_of_strings_to_matlab_cell_array(change_dist.genes),
        regions = list_of_strings_to_matlab_cell_array(change_dist.regions),
        age_scaler = scalers.unify(change_dist.age_scaler).cache_name(),
        mu = change_dist.mu,
        std = change_dist.std,
        bin_edges = change_dist.bin_edges,
        bin_centers = change_dist.bin_centers,
        weights = change_dist.weights,
    )
    filename = join(cache_dir(), fit_results_relative_path(data,fitter) + '-change-dist.mat')
    save_matfile(mdict, filename)
Beispiel #9
0
def save_as_mat_files(data, fitter, fits, has_change_distributions):
    for dataset in data.datasets:
        filename = join(cache_dir(), fit_results_relative_path(dataset,fitter) + '.mat')
        dataset_fits = fits[dataset.name]
    
        print 'Saving mat file to {}'.format(filename)
        shape = fitter.shape
        
        gene_names = dataset.gene_names
        gene_idx = {g:i for i,g in enumerate(gene_names)}
        n_genes = len(gene_names)
        region_names = dataset.region_names
        region_idx = {r:i for i,r in enumerate(region_names)}
        n_regions = len(region_names)
        
        write_theta = shape.can_export_params_to_matlab()
        if write_theta:
            theta = init_array(np.NaN, shape.n_params(), n_genes,n_regions)
        else:
            theta = np.NaN
        
        fit_scores = init_array(np.NaN, n_genes,n_regions)
        LOO_scores = init_array(np.NaN, n_genes,n_regions)
        fit_predictions = init_array(np.NaN, *dataset.expression.shape)
        LOO_predictions = init_array(np.NaN, *dataset.expression.shape)
        high_res_predictions = init_array(np.NaN, cfg.n_curve_points_to_plot, n_genes, n_regions)
        scaled_high_res_ages = np.linspace(dataset.ages.min(), dataset.ages.max(), cfg.n_curve_points_to_plot)
        original_high_res_ages = scalers.unify(dataset.age_scaler).unscale(scaled_high_res_ages)
        if has_change_distributions:
            change_distribution_bin_centers = fits.change_distribution_params.bin_centers
            n_bins = len(change_distribution_bin_centers)
            change_distribution_weights = init_array(np.NaN, n_bins, n_genes, n_regions)
        else:
            change_distribution_bin_centers = []
            change_distribution_weights = []
        for (g,r),fit in dataset_fits.iteritems():
            series = dataset.get_one_series(g,r)
            ig = gene_idx[g]
            ir = region_idx[r]
            fit_scores[ig,ir] = fit.fit_score
            LOO_scores[ig,ir] = fit.LOO_score
            if write_theta and fit.theta is not None:
                theta[:,ig,ir] = fit.theta
            if fit.fit_predictions is not None:
                fit_predictions[series.original_inds,ig,ir] = fit.fit_predictions
            if fit.LOO_predictions is not None:
                LOO_predictions[series.original_inds,ig,ir] = fit.LOO_predictions
            if fit.theta is not None:
                high_res_predictions[:,ig,ir] = shape.f(fit.theta, scaled_high_res_ages)
            change_weights = getattr(fit,'change_distribution_weights',None)
            if change_weights is not None:
                change_distribution_weights[:,ig,ir] = change_weights
        mdict = dict(
            gene_names = list_of_strings_to_matlab_cell_array(gene_names),
            region_names = list_of_strings_to_matlab_cell_array(region_names),
            theta = theta,
            fit_scores = fit_scores,
            LOO_scores = LOO_scores,
            fit_predictions = fit_predictions,
            LOO_predictions = LOO_predictions,
            high_res_predictions = high_res_predictions,
            high_res_ages = original_high_res_ages,
            change_distribution_bin_centers = change_distribution_bin_centers,
            change_distribution_weights = change_distribution_weights,
        )
        savemat(filename, mdict, oned_as='column')
Beispiel #10
0
def save_as_mat_files(data, fitter, fits, has_change_distributions):
    for dataset in data.datasets:
        filename = join(cache_dir(),
                        fit_results_relative_path(dataset, fitter) + '.mat')
        dataset_fits = fits[dataset.name]

        print 'Saving mat file to {}'.format(filename)
        shape = fitter.shape

        gene_names = dataset.gene_names
        gene_idx = {g: i for i, g in enumerate(gene_names)}
        n_genes = len(gene_names)
        region_names = dataset.region_names
        region_idx = {r: i for i, r in enumerate(region_names)}
        n_regions = len(region_names)

        write_theta = shape.can_export_params_to_matlab()
        if write_theta:
            theta = init_array(np.NaN, shape.n_params(), n_genes, n_regions)
        else:
            theta = np.NaN

        fit_scores = init_array(np.NaN, n_genes, n_regions)
        LOO_scores = init_array(np.NaN, n_genes, n_regions)
        fit_predictions = init_array(np.NaN, *dataset.expression.shape)
        LOO_predictions = init_array(np.NaN, *dataset.expression.shape)
        high_res_predictions = init_array(np.NaN, cfg.n_curve_points_to_plot,
                                          n_genes, n_regions)
        scaled_high_res_ages = np.linspace(dataset.ages.min(),
                                           dataset.ages.max(),
                                           cfg.n_curve_points_to_plot)
        original_high_res_ages = scalers.unify(
            dataset.age_scaler).unscale(scaled_high_res_ages)
        if has_change_distributions:
            change_distribution_bin_centers = fits.change_distribution_params.bin_centers
            n_bins = len(change_distribution_bin_centers)
            change_distribution_weights = init_array(np.NaN, n_bins, n_genes,
                                                     n_regions)
        else:
            change_distribution_bin_centers = []
            change_distribution_weights = []
        for (g, r), fit in dataset_fits.iteritems():
            series = dataset.get_one_series(g, r)
            ig = gene_idx[g]
            ir = region_idx[r]
            fit_scores[ig, ir] = fit.fit_score
            LOO_scores[ig, ir] = fit.LOO_score
            if write_theta and fit.theta is not None:
                theta[:, ig, ir] = fit.theta
            if fit.fit_predictions is not None:
                fit_predictions[series.original_inds, ig,
                                ir] = fit.fit_predictions
            if fit.LOO_predictions is not None:
                LOO_predictions[series.original_inds, ig,
                                ir] = fit.LOO_predictions
            if fit.theta is not None:
                high_res_predictions[:, ig,
                                     ir] = shape.f(fit.theta,
                                                   scaled_high_res_ages)
            change_weights = getattr(fit, 'change_distribution_weights', None)
            if change_weights is not None:
                change_distribution_weights[:, ig, ir] = change_weights
        mdict = dict(
            gene_names=list_of_strings_to_matlab_cell_array(gene_names),
            region_names=list_of_strings_to_matlab_cell_array(region_names),
            theta=theta,
            fit_scores=fit_scores,
            LOO_scores=LOO_scores,
            fit_predictions=fit_predictions,
            LOO_predictions=LOO_predictions,
            high_res_predictions=high_res_predictions,
            high_res_ages=original_high_res_ages,
            change_distribution_bin_centers=change_distribution_bin_centers,
            change_distribution_weights=change_distribution_weights,
        )
        savemat(filename, mdict, oned_as='column')