def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    assert_inputs_exist(parser,
                        [args.in_bundle, args.in_centroid],
                        optional=args.reference)
    assert_outputs_exist(parser, args, args.out_map)

    sft_bundle = load_tractogram_with_reference(parser, args, args.in_bundle)
    sft_centroid = load_tractogram_with_reference(parser, args,
                                                  args.in_centroid)

    if not len(sft_bundle.streamlines):
        logging.error('Empty bundle file {}. '
                      'Skipping'.format(args.in_bundle))
        raise ValueError

    if not len(sft_centroid.streamlines):
        logging.error('Centroid file {} should contain one streamline. '
                      'Skipping'.format(args.in_centroid))
        raise ValueError

    sft_bundle.to_vox()
    bundle_streamlines_vox = sft_bundle.streamlines
    bundle_streamlines_vox._data *= args.upsample

    sft_centroid.to_vox()
    centroid_streamlines_vox = sft_centroid.streamlines
    centroid_streamlines_vox._data *= args.upsample

    upsampled_shape = [s * args.upsample for s in sft_bundle.dimensions]
    tdi_mask = compute_tract_counts_map(bundle_streamlines_vox,
                                        upsampled_shape) > 0

    tdi_mask_nzr = np.nonzero(tdi_mask)
    tdi_mask_nzr_ind = np.transpose(tdi_mask_nzr)

    min_dist_ind, _ = min_dist_to_centroid(tdi_mask_nzr_ind,
                                           centroid_streamlines_vox[0])

    # Save the (upscaled) labels mask
    labels_mask = np.zeros(tdi_mask.shape)
    labels_mask[tdi_mask_nzr] = min_dist_ind + 1  # 0 is background value
    rescaled_affine = sft_bundle.affine
    rescaled_affine[:3, :3] /= args.upsample
    labels_img = nib.Nifti1Image(labels_mask, rescaled_affine)
    upsampled_spacing = sft_bundle.voxel_sizes / args.upsample
    labels_img.header.set_zooms(upsampled_spacing)
    nib.save(labels_img, args.out_map)
Beispiel #2
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    assert_inputs_exist(parser, [args.in_bundle, args.in_centroid])
    assert_outputs_exist(parser, args,
                         [args.output_label, args.output_distance])

    is_header_compatible(args.in_bundle, args.in_centroid)

    sft_bundle = load_tractogram_with_reference(parser, args, args.in_bundle)

    sft_centroid = load_tractogram_with_reference(parser, args,
                                                  args.in_centroid)

    if not len(sft_bundle.streamlines):
        logging.error('Empty bundle file {}. Skipping'.format(args.in_bundle))
        raise ValueError

    if not len(sft_centroid.streamlines):
        logging.error('Empty centroid streamline file {}. Skipping'.format(
            args.centroid_streamline))
        raise ValueError

    min_dist_label, min_dist = min_dist_to_centroid(
        sft_bundle.streamlines.data, sft_centroid.streamlines.data)
    min_dist_label += 1

    # Save assignment in a compressed numpy file
    # You can load this file and access its data using
    # f = np.load('someFile.npz')
    # assignment = f['arr_0']
    np.savez_compressed(args.output_label, min_dist_label)

    # Save distance in a compressed numpy file
    # You can load this file and access its data using
    # f = np.load('someFile.npz')
    # distance = f['arr_0']
    np.savez_compressed(args.output_distance, min_dist)
Beispiel #3
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()
    set_sft_logger_level('ERROR')
    assert_inputs_exist(parser, [args.in_bundle, args.in_centroid],
                        optional=args.reference)
    assert_outputs_exist(parser,
                         args,
                         args.out_labels_map,
                         optional=[
                             args.out_labels_npz, args.out_distances_npz,
                             args.labels_color_dpp, args.distances_color_dpp
                         ])

    sft_bundle = load_tractogram_with_reference(parser, args, args.in_bundle)
    sft_centroid = load_tractogram_with_reference(parser, args,
                                                  args.in_centroid)

    if not len(sft_bundle.streamlines):
        logging.error('Empty bundle file {}. '
                      'Skipping'.format(args.in_bundle))
        raise ValueError

    if len(sft_centroid.streamlines) < 1 \
            or len(sft_centroid.streamlines) > 1:
        logging.error('Centroid file {} should contain one streamline. '
                      'Skipping'.format(args.in_centroid))
        raise ValueError

    if not is_header_compatible(sft_centroid, sft_bundle):
        raise IOError('{} and {}do not have a compatible header'.format(
            args.in_centroid, args.in_bundle))

    sft_bundle.to_vox()
    sft_bundle.to_corner()

    # Slightly cut the bundle at the edgge to clean up single streamline voxels
    # with no neighbor. Remove isolated voxels to keep a single 'blob'
    binary_bundle = compute_tract_counts_map(
        sft_bundle.streamlines, sft_bundle.dimensions).astype(bool)

    structure = ndi.generate_binary_structure(3, 1)
    if np.count_nonzero(binary_bundle) > args.min_voxel_count \
            and len(sft_bundle) > args.min_streamline_count:
        binary_bundle = ndi.binary_dilation(binary_bundle,
                                            structure=np.ones((3, 3, 3)))
        binary_bundle = ndi.binary_erosion(binary_bundle,
                                           structure=structure,
                                           iterations=2)

        bundle_disjoint, _ = ndi.label(binary_bundle)
        unique, count = np.unique(bundle_disjoint, return_counts=True)
        val = unique[np.argmax(count[1:]) + 1]
        binary_bundle[bundle_disjoint != val] = 0

        # Chop off some streamlines
        cut_sft = cut_outside_of_mask_streamlines(sft_bundle, binary_bundle)
    else:
        cut_sft = sft_bundle

    if args.nb_pts is not None:
        sft_centroid = resample_streamlines_num_points(sft_centroid,
                                                       args.nb_pts)
    else:
        args.nb_pts = len(sft_centroid.streamlines[0])

    # Generate a centroids labels mask for the centroid alone
    sft_centroid.to_vox()
    sft_centroid.to_corner()
    sft_centroid = _affine_slr(sft_bundle, sft_centroid)

    # Map every streamlines points to the centroids
    binary_centroid = compute_tract_counts_map(
        sft_centroid.streamlines, sft_centroid.dimensions).astype(bool)
    # TODO N^2 growth in RAM, should split it if we want to do nb_pts = 100
    min_dist_label, min_dist = min_dist_to_centroid(
        cut_sft.streamlines._data, sft_centroid.streamlines._data)
    min_dist_label += 1  # 0 means no labels

    # It is not allowed that labels jumps labels for consistency
    # Streamlines should have continous labels
    curr_ind = 0
    final_streamlines = []
    final_label = []
    final_dist = []
    for i, streamline in enumerate(cut_sft.streamlines):
        next_ind = curr_ind + len(streamline)
        curr_labels = min_dist_label[curr_ind:next_ind]
        curr_dist = min_dist[curr_ind:next_ind]
        curr_ind = next_ind

        # Flip streamlines so the labels increase (facilitate if/else)
        # Should always be ordered in nextflow pipeline
        gradient = np.gradient(curr_labels)
        if len(np.argwhere(gradient < 0)) > len(np.argwhere(gradient > 0)):
            streamline = streamline[::-1]
            curr_labels = curr_labels[::-1]
            curr_dist = curr_dist[::-1]

        # Find jumps, cut them and find the longest
        gradient = np.ediff1d(curr_labels)
        max_jump = max(args.nb_pts // 5, 1)
        if len(np.argwhere(np.abs(gradient) > max_jump)) > 0:
            pos_jump = np.where(np.abs(gradient) > max_jump)[0] + 1
            split_chunk = np.split(curr_labels, pos_jump)
            max_len = 0
            max_pos = 0
            for j, chunk in enumerate(split_chunk):
                if len(chunk) > max_len:
                    max_len = len(chunk)
                    max_pos = j

            curr_labels = split_chunk[max_pos]
            gradient_chunk = np.ediff1d(chunk)
            if len(np.unique(np.sign(gradient_chunk))) > 1:
                continue
            streamline = np.split(streamline, pos_jump)[max_pos]
            curr_dist = np.split(curr_dist, pos_jump)[max_pos]

        final_streamlines.append(streamline)
        final_label.append(curr_labels)
        final_dist.append(curr_dist)

    # Re-arrange the new cut streamlines and their metadata
    # Compute the voxels equivalent of the labels maps
    new_sft = StatefulTractogram.from_sft(final_streamlines, sft_bundle)

    tdi_mask_nzr = np.nonzero(binary_bundle)
    tdi_mask_nzr_ind = np.transpose(tdi_mask_nzr)
    min_dist_ind, _ = min_dist_to_centroid(tdi_mask_nzr_ind,
                                           sft_centroid.streamlines[0])
    img_labels = np.zeros(binary_centroid.shape, dtype=np.int16)
    img_labels[tdi_mask_nzr] = min_dist_ind + 1  # 0 is background value

    nib.save(nib.Nifti1Image(img_labels, sft_bundle.affine),
             args.out_labels_map)

    if args.labels_color_dpp or args.distances_color_dpp \
            or args.out_labels_npz or args.out_distances_npz:
        labels_array = ArraySequence(final_label)
        dist_array = ArraySequence(final_dist)
        # WARNING: WILL NOT WORK WITH THE INPUT TRK !
        # These will fit only with the TRK saved below.
        if args.out_labels_npz:
            np.savez_compressed(args.out_labels_npz, labels_array._data)
        if args.out_distances_npz:
            np.savez_compressed(args.out_distances_npz, dist_array._data)

        cmap = plt.get_cmap(args.colormap)
        new_sft.data_per_point['color'] = ArraySequence(new_sft.streamlines)

        # Nicer visualisation for MI-Brain
        if args.labels_color_dpp:
            new_sft.data_per_point['color']._data = cmap(
                labels_array._data / np.max(labels_array._data))[:, 0:3] * 255
            save_tractogram(new_sft, args.labels_color_dpp)

        if args.distances_color_dpp:
            new_sft.data_per_point['color']._data = cmap(
                dist_array._data / np.max(dist_array._data))[:, 0:3] * 255
            save_tractogram(new_sft, args.distances_color_dpp)