import Orange.data from Orange.data import Table import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors # how to load files into numpy # file_inflated = np.genfromtxt('biological_inflated.csv', delimiter=',') # Load filename = "../../data/ccp_normCounts_mESCquartz.counts.cycle_genes.csv" dataset = Orange.data.Table(filename) # Izracunaj vse potrebno dat, mas, zero = scimpute.zero_inflate(dataset.X) sc = scimpute.ScImpute(dat) res = sc.average() cor, data = sc.compare(dataset.X, mas, zero) # Plotaj vse potrebno # Primerjava bioloskih podatkov z imputiranimi vrednostmi fig, (ax0, ax1, ax2) = plt.subplots(3, 1) c = ax0.pcolormesh(dataset.X, norm=colors.LogNorm(vmin=np.amin(dataset.X) + 1, vmax=np.amax(dataset.X)), cmap=plt.get_cmap("binary")) fig.colorbar(c, ax=ax0) ax0.set_title('Biološki podatki') c = ax1.pcolormesh(res, norm=colors.LogNorm(vmin=np.amin(res) + 1,
import Orange.data from Orange.data import Table import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors # how to load files into numpy # file_inflated = np.genfromtxt('biological_inflated.csv', delimiter=',') # Load filename = "../../data/ccp_normCounts_mESCquartz.counts.cycle_genes.csv" dataset = Orange.data.Table(filename) # Izracunaj vse potrebno dat, mas, zero = scimpute.zero_inflate(dataset.X) sc = scimpute.ScImpute(dataset.X) res = sc.scvis(dat) cor, data = sc.compare_embedded(res) print(cor) razlika1 = [] razlika2 = [] for x in range(len(data[0])): if (data[0][x] > 0.7 or data[0][x] < -0.7): razlika1.append(data[1][x] - data[0][x]) if (data[0][x] < 0.3 and data[0][x] > -0.3): razlika2.append(data[1][x] - data[0][x]) # Plotaj vse potrebno # Primerjava bioloskih podatkov z imputiranimi vrednostmi fig, (ax0, ax1) = plt.subplots(2, 1)
import sys sys.path.append("../..") import scimpute import Orange.data from Orange.data import Table import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors # Izracunaj vse potrebno data_gen = scimpute.generate() dat, mas, zero = scimpute.zero_inflate(data_gen) sc = scimpute.ScImpute(data_gen) res = sc.scvis(dat) cor, data = sc.compare_embedded(res) print(cor) razlika1 = [] razlika2 = [] for x in range(len(data[0])): if (data[0][x] > 0.7 or data[0][x] < -0.7): razlika1.append(data[1][x] - data[0][x]) if (data[0][x] < 0.3 and data[0][x] > -0.3): razlika2.append(data[1][x] - data[0][x]) # Plotaj vse potrebno # Primerjava bioloskih podatkov z imputiranimi vrednostmi fig, (ax0, ax1) = plt.subplots(2, 1) c = ax0.pcolormesh(res[0], cmap=plt.get_cmap("binary")) fig.colorbar(c, ax=ax0) ax0.set_title('Latentni prostor iz podatkov po vstavljanju ničel')