Beispiel #1
0
    def _compute_covariance(self):
        """Computes the covariance matrix for each Gaussian kernel using
        covariance_factor().
        """
        self.factor = self.covariance_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self._data_covariance = atleast_2d(
                cov(self.dataset, rowvar=1, bias=False, aweights=self.weights))
            self._data_inv_cov = linalg.inv(self._data_covariance)

        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        self._norm_factor = sqrt(linalg.det(2 * pi * self.covariance)) * self.n
Beispiel #2
0
    def _compute_covariance(self):
        """Computes the covariance matrix for each Gaussian kernel using
        covariance_factor().
        """
        self.factor = self.covariance_factor()
        # Cache covariance and inverse covariance of the data
        if not hasattr(self, '_data_inv_cov'):
            self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1,
                                               bias=False,
                                               aweights=self.weights))
            self._data_inv_cov = linalg.inv(self._data_covariance)

        self.covariance = self._data_covariance * self.factor**2
        self.inv_cov = self._data_inv_cov / self.factor**2
        self._norm_factor = sqrt(linalg.det(2*pi*self.covariance)) * self.n