Beispiel #1
0
 def test_definition(self):
     x = np.array([1, 2, 3, 4 + 1j, 1, 2, 3, 4 + 2j], dtype=self.cdt)
     y = fft(x)
     assert_equal(y.dtype, self.cdt)
     y1 = direct_dft(x)
     assert_array_almost_equal(y, y1)
     x = np.array([1, 2, 3, 4 + 0j, 5], dtype=self.cdt)
     assert_array_almost_equal(fft(x), direct_dft(x))
Beispiel #2
0
 def test_random_real(self):
     for size in [1, 51, 111, 100, 200, 64, 128, 256, 1024]:
         x = random([size]).astype(self.rdt)
         y1 = ifft(fft(x))
         y2 = fft(ifft(x))
         assert_equal(y1.dtype, self.cdt)
         assert_equal(y2.dtype, self.cdt)
         assert_array_almost_equal(y1, x)
         assert_array_almost_equal(y2, x)
Beispiel #3
0
 def test_djbfft(self):
     for i in range(2, 14):
         n = 2**i
         x = np.arange(n)
         y = fft(x.astype(complex))
         y2 = numpy.fft.fft(x)
         assert_array_almost_equal(y, y2)
         y = fft(x)
         assert_array_almost_equal(y, y2)
Beispiel #4
0
    def test_size_accuracy(self):
        # Sanity check for the accuracy for prime and non-prime sized inputs
        for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
            np.random.seed(1234)
            x = np.random.rand(size).astype(self.rdt)
            y = ifft(fft(x))
            _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
            y = fft(ifft(x))
            _assert_close_in_norm(x, y, self.rtol, size, self.rdt)

            x = (x + 1j * np.random.rand(size)).astype(self.cdt)
            y = ifft(fft(x))
            _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
            y = fft(ifft(x))
            _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
Beispiel #5
0
    def test_shape_axes_argument2(self):
        # Change shape of the last axis
        x = numpy.random.random((10, 5, 3, 7))
        y = fftn(x, axes=(-1, ), s=(8, ))
        assert_array_almost_equal(y, fft(x, axis=-1, n=8))

        # Change shape of an arbitrary axis which is not the last one
        x = numpy.random.random((10, 5, 3, 7))
        y = fftn(x, axes=(-2, ), s=(8, ))
        assert_array_almost_equal(y, fft(x, axis=-2, n=8))

        # Change shape of axes: cf #244, where shape and axes were mixed up
        x = numpy.random.random((4, 4, 2))
        y = fftn(x, axes=(-3, -2), s=(8, 8))
        assert_array_almost_equal(y, numpy.fft.fftn(x, axes=(-3, -2),
                                                    s=(8, 8)))
Beispiel #6
0
 def test_n_argument_real(self):
     x1 = np.array([1, 2, 3, 4], dtype=np.float16)
     x2 = np.array([1, 2, 3, 4], dtype=np.float16)
     y = fft([x1, x2], n=4)
     assert_equal(y.dtype, np.complex64)
     assert_equal(y.shape, (2, 4))
     assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32)))
     assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32)))
Beispiel #7
0
 def _test_n_argument_complex(self):
     x1 = np.array([1, 2, 3, 4 + 1j], dtype=self.cdt)
     x2 = np.array([1, 2, 3, 4 + 1j], dtype=self.cdt)
     y = fft([x1, x2], n=4)
     assert_equal(y.dtype, self.cdt)
     assert_equal(y.shape, (2, 4))
     assert_array_almost_equal(y[0], direct_dft(x1))
     assert_array_almost_equal(y[1], direct_dft(x2))
Beispiel #8
0
def direct_dftn(x):
    x = asarray(x)
    for axis in range(len(x.shape)):
        x = fft(x, axis=axis)
    return x
Beispiel #9
0
    def test_axes_argument(self):
        # plane == ji_plane, x== kji_space
        plane1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
        plane2 = [[10, 11, 12], [13, 14, 15], [16, 17, 18]]
        plane3 = [[19, 20, 21], [22, 23, 24], [25, 26, 27]]
        ki_plane1 = [[1, 2, 3], [10, 11, 12], [19, 20, 21]]
        ki_plane2 = [[4, 5, 6], [13, 14, 15], [22, 23, 24]]
        ki_plane3 = [[7, 8, 9], [16, 17, 18], [25, 26, 27]]
        jk_plane1 = [[1, 10, 19], [4, 13, 22], [7, 16, 25]]
        jk_plane2 = [[2, 11, 20], [5, 14, 23], [8, 17, 26]]
        jk_plane3 = [[3, 12, 21], [6, 15, 24], [9, 18, 27]]
        kj_plane1 = [[1, 4, 7], [10, 13, 16], [19, 22, 25]]
        kj_plane2 = [[2, 5, 8], [11, 14, 17], [20, 23, 26]]
        kj_plane3 = [[3, 6, 9], [12, 15, 18], [21, 24, 27]]
        ij_plane1 = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
        ij_plane2 = [[10, 13, 16], [11, 14, 17], [12, 15, 18]]
        ij_plane3 = [[19, 22, 25], [20, 23, 26], [21, 24, 27]]
        ik_plane1 = [[1, 10, 19], [2, 11, 20], [3, 12, 21]]
        ik_plane2 = [[4, 13, 22], [5, 14, 23], [6, 15, 24]]
        ik_plane3 = [[7, 16, 25], [8, 17, 26], [9, 18, 27]]
        ijk_space = [jk_plane1, jk_plane2, jk_plane3]
        ikj_space = [kj_plane1, kj_plane2, kj_plane3]
        jik_space = [ik_plane1, ik_plane2, ik_plane3]
        jki_space = [ki_plane1, ki_plane2, ki_plane3]
        kij_space = [ij_plane1, ij_plane2, ij_plane3]
        x = array([plane1, plane2, plane3])

        assert_array_almost_equal(fftn(x),
                                  fftn(x, axes=(-3, -2, -1)))  # kji_space
        assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
        assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1)))
        y = fftn(x, axes=(2, 1, 0))  # ijk_space
        assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
        y = fftn(x, axes=(2, 0, 1))  # ikj_space
        assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2),
                                  fftn(ikj_space))
        y = fftn(x, axes=(1, 2, 0))  # jik_space
        assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2),
                                  fftn(jik_space))
        y = fftn(x, axes=(1, 0, 2))  # jki_space
        assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
        y = fftn(x, axes=(0, 2, 1))  # kij_space
        assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))

        y = fftn(x, axes=(-2, -1))  # ji_plane
        assert_array_almost_equal(fftn(plane1), y[0])
        assert_array_almost_equal(fftn(plane2), y[1])
        assert_array_almost_equal(fftn(plane3), y[2])

        y = fftn(x, axes=(1, 2))  # ji_plane
        assert_array_almost_equal(fftn(plane1), y[0])
        assert_array_almost_equal(fftn(plane2), y[1])
        assert_array_almost_equal(fftn(plane3), y[2])

        y = fftn(x, axes=(-3, -2))  # kj_plane
        assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
        assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
        assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])

        y = fftn(x, axes=(-3, -1))  # ki_plane
        assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
        assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
        assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])

        y = fftn(x, axes=(-1, -2))  # ij_plane
        assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
        assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
        assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))

        y = fftn(x, axes=(-1, -3))  # ik_plane
        assert_array_almost_equal(fftn(ik_plane1),
                                  swapaxes(y[:, 0, :], -1, -2))
        assert_array_almost_equal(fftn(ik_plane2),
                                  swapaxes(y[:, 1, :], -1, -2))
        assert_array_almost_equal(fftn(ik_plane3),
                                  swapaxes(y[:, 2, :], -1, -2))

        y = fftn(x, axes=(-2, -3))  # jk_plane
        assert_array_almost_equal(fftn(jk_plane1),
                                  swapaxes(y[:, :, 0], -1, -2))
        assert_array_almost_equal(fftn(jk_plane2),
                                  swapaxes(y[:, :, 1], -1, -2))
        assert_array_almost_equal(fftn(jk_plane3),
                                  swapaxes(y[:, :, 2], -1, -2))

        y = fftn(x, axes=(-1, ))  # i_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
        y = fftn(x, axes=(-2, ))  # j_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
        y = fftn(x, axes=(0, ))  # k_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])

        y = fftn(x, axes=())  # point
        assert_array_almost_equal(y, x)
Beispiel #10
0
 def test_1_argument_real(self):
     x1 = np.array([1, 2, 3, 4], dtype=np.float16)
     y = fft(x1, n=4)
     assert_equal(y.dtype, np.complex64)
     assert_equal(y.shape, (4, ))
     assert_array_almost_equal(y, direct_dft(x1.astype(np.float32)))
Beispiel #11
0
def fft(x, n=None, axis=-1, overwrite_x=False):
    """
    Return discrete Fourier transform of real or complex sequence.

    The returned complex array contains ``y(0), y(1),..., y(n-1)``, where

    ``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.

    Parameters
    ----------
    x : array_like
        Array to Fourier transform.
    n : int, optional
        Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
        truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the fft's are computed; the default is over the
        last axis (i.e., ``axis=-1``).
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    z : complex ndarray
        with the elements::

            [y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)]        if n is even
            [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)]  if n is odd

        where::

            y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1

    See Also
    --------
    ifft : Inverse FFT
    rfft : FFT of a real sequence

    Notes
    -----
    The packing of the result is "standard": If ``A = fft(a, n)``, then
    ``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
    positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
    terms, in order of decreasingly negative frequency. So ,for an 8-point
    transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
    To rearrange the fft output so that the zero-frequency component is
    centered, like [-4, -3, -2, -1,  0,  1,  2,  3], use `fftshift`.

    Both single and double precision routines are implemented. Half precision
    inputs will be converted to single precision. Non-floating-point inputs
    will be converted to double precision. Long-double precision inputs are
    not supported.

    This function is most efficient when `n` is a power of two, and least
    efficient when `n` is prime.

    Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
    If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.

    If the data type of `x` is real, a "real FFT" algorithm is automatically
    used, which roughly halves the computation time. To increase efficiency
    a little further, use `rfft`, which does the same calculation, but only
    outputs half of the symmetrical spectrum. If the data is both real and
    symmetrical, the `dct` can again double the efficiency by generating
    half of the spectrum from half of the signal.

    Examples
    --------
    >>> from scipy.fftpack import fft, ifft
    >>> x = np.arange(5)
    >>> np.allclose(fft(ifft(x)), x, atol=1e-15)  # within numerical accuracy.
    True

    """
    return _pocketfft.fft(x, n, axis, None, overwrite_x)
Beispiel #12
0
def direct_dftn(x):
    x = asarray(x)
    for axis in range(x.ndim):
        x = fft(x, axis=axis)
    return x