Beispiel #1
0
def interpAlt(alt_in, Z, val_in, intrpOrder, logFlg):
    
    if logFlg:                
        val_out  = np.exp(np.flipud( intrpUniSpl( np.flipud(alt_in), np.log(np.flipud(val_in)), k=intrpOrder )( np.flipud(Z) ) ) )
    else:
        val_out  = np.flipud( intrpUniSpl( np.flipud(alt_in), np.flipud(val_in), k=intrpOrder )( np.flipud(Z) ) )        
    
    return val_out
Beispiel #2
0
def main():

    #----------------
    # Initializations
    #----------------
    loc = 'fl0'
    sondeDir = '/data1/ancillary_data/sondes/' + loc.lower() + '/'
    verW = 'v77'  # version 77 is used for individual retrievals at specific times

    pltFlg = True

    #-------------------
    # Interpolation Oder
    #-------------------
    intrpOrder = 1
    nSkip = 1  # Number of points to skip when merging WACCM and NCEP profiles

    #-----------------------
    # Date Range of interest
    #-----------------------
    iyear = 2010
    imnth = 1
    iday = 1
    fyear = 2016
    fmnth = 12
    fday = 31

    #----------------------
    # Output Data Directory
    #----------------------
    dataDir = '/data1/' + loc.lower() + '/'

    #-------------------------
    # WACCM monthly means file
    #-------------------------
    WACCMfile = '/data/Campaign/' + loc.upper(
    ) + '/waccm/WACCM_pTW-meanV6.' + loc.upper()

    #--------------------------------------------------------------------
    # Read WACCM monthly mean data. WACCM monthly mean file is ascending,
    # adjust so that it is descending. Also units are in km.
    #--------------------------------------------------------------------
    with open(WACCMfile, 'r') as fopen:
        lines = fopen.readlines()

    nlyrs = int(lines[0].strip().split()[0])
    s_ind = 3
    Z = np.flipud(
        np.array([
            float(row.strip().split()[0]) for row in lines[s_ind:nlyrs + s_ind]
        ]))
    waccmT = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))
    s_ind = 3 + nlyrs + 2
    waccmP = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))
    s_ind = 3 + nlyrs + 2 + nlyrs + 2
    waccmW = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))

    #----------------------------
    # File and directory checking
    #----------------------------
    ckDir(sondeDir, exitFlg=True)
    ckDir(dataDir, exitFlg=True)

    s = rs.SondeClass(sondeDir,
                      loc,
                      iyear=iyear,
                      imnth=imnth,
                      iday=iday,
                      fyear=fyear,
                      fmnth=fmnth,
                      fday=fday,
                      fleoutFlg=False)

    s.readfilessonde()
    s.sondePrf()

    sonde = s.sonde

    sondedt = np.asarray(sonde['dt'])
    sondedate = np.asarray(sonde['date'])
    sondealt = np.asarray(sonde['Alt_km_a'])
    sondeH2OPrf_a = np.asarray(sonde['H2Omr_ppmv_a']) * 1e-6
    sondeH2OPrfsd_a = np.asarray(sonde['H2Osd_ppmv_a'])
    sondealt_a = np.asarray(sonde['Alt_km_a'])
    sondeairmass_a = np.asarray(sonde['airmass_a'])

    #---------------------------
    # Iterate through sonde Prfs
    #---------------------------
    for i, sngDay in enumerate(sondedt):

        #----------------------------
        # Get corresponding directory
        #----------------------------

        baseDir = dataDir + '{0:04d}{1:02d}{2:02d}/'.format(
            sngDay.year, sngDay.month, sngDay.day)

        if not os.path.exists(baseDir): continue

        #--------------------------------------------------
        # Find month index for monthly WACCM water profiles
        #--------------------------------------------------
        mnthInd = sngDay.month - 1  # -1 because January is in the 0th column

        #---------------------------------
        #
        #---------------------------------
        Z_day = sondealt[i]
        Q_day = sondeH2OPrf_a[i]

        sondetop = Z_day[-1]
        topInd = np.argmin(
            abs(Z - sondetop
                ))  # Where top of NCEP reanalysis fits in WACCM grid height

        Zin = np.concatenate((Z[0:(topInd - nSkip)], np.flipud(Z_day)))

        SHin = np.concatenate((waccmW[0:(topInd - nSkip),
                                      mnthInd], np.flipud(Q_day)))

        #-----------------------------------
        # Interpolate retrieved profile onto
        # sfit input grid
        #-----------------------------------
        H2Oout = interpolate.interp1d(Zin,
                                      SHin,
                                      axis=0,
                                      fill_value=Q_day[0],
                                      bounds_error=False,
                                      kind='linear')(Z)
        H2Oout2 = np.flipud(
            intrpUniSpl(np.flipud(Zin), np.flipud(SHin), k=1)(np.flipud(Z)))

        #------------------------
        # remove v4 for 6-hourly files
        #------------------------
        waterFiles_test = glob.glob(baseDir + 'w-120*' + verW)
        waterFiles_test = [
            i for i in waterFiles_test if len(os.path.basename(i)) > 10
        ]

        if len(waterFiles_test) >= 1:
            for f in waterFiles_test:
                os.remove(f)

        #---------------------
        # Write out water file
        #---------------------
        tstamp = '{0:04d}{1:02d}{2:02d}.{3:02d}{4:02d}{5:02d}'.format(
            sngDay.year, sngDay.month, sngDay.day, sngDay.hour, sngDay.minute,
            sngDay.second)

        with open(baseDir + 'w-120.' + tstamp + '.' + verW, 'w') as fopen:
            fopen.write('    1     H2O from Sonde  \n')

            for row in segmnt(H2Oout, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #--------------------
        # Create plots to pdf
        #--------------------
        if pltFlg:
            pdfsav = PdfPages(baseDir + 'Sonde_' + tstamp +
                              '_WaterProfile.pdf')

            fig1, ax1 = plt.subplots()
            ax1.plot(H2Oout, Z, 'rx-', label='Interpolated Water Profile')
            ax1.plot(Q_day, Z_day, 'bx-', label='Original Sonde Water Profile')
            ax1.grid(True, which='both')
            ax1.legend(prop={'size': 9})
            ax1.set_ylabel('Altitude [km]')
            ax1.set_xlabel('VMR')
            ax1.tick_params(axis='x', which='both', labelsize=8)
            ax1.set_ylim((Z[-1], 60))
            #ax1.set_xlim((0,np.max((waccmW[-1,mnthInd],dayShum[-1]))))
            ax1.set_title(sngDay)

            pdfsav.savefig(fig1, dpi=250)

            pdfsav.close()

        print 'Finished processing folder: {}'.format(sngDay)
Beispiel #3
0
def main():

    #---------
    # Location
    #---------
    loc = 'tab'
    #loc = 'mlo'

    #------------------------------------
    # Version number to append water file
    #------------------------------------
    verW = 'v3'

    #-----------------------------------------
    # Interpolation flag for NCEP re-analysis:
    # False = Nearest point. True = linear
    #-----------------------------------------
    interpFlg = True

    #---------------------
    # Interpolation things
    #---------------------
    nSkip = 3  # Number of points to skip when merging WACCM and NCEP profiles
    intrpOrder = 1  # Order of interpolation
    logFlg = True  # Flag to do interpolation of log of water

    #-----------------------
    # Date Range of interest
    #-----------------------
    iyear = 2017
    imnth = 9
    iday = 1
    fyear = 2017
    fmnth = 12
    fday = 31

    #-------------------------------
    # NCEP Reanalysis data directory
    #-------------------------------
    NCEPdirShum = '/data1/ancillary_data/NCEPdata/NCEP_Shum/'
    NCEPdirHgt = '/data1/ancillary_data/NCEPdata/NCEP_hgt/'

    #---------------
    # Data Directory
    #---------------
    dataDir = '/data1/' + loc.lower() + '/'
    #dataDir  = '/data1/iortega/WYO/'

    #-------------------------
    # WACCM monthly means file
    #-------------------------
    WACCMfile = '/data/Campaign/' + loc.upper(
    ) + '/waccm/WACCM_pTW-meanV6.' + loc.upper()

    #---------------------
    # Establish date range
    #---------------------
    dRange = sc.DateRange(iyear, imnth, iday, fyear, fmnth, fday)

    #---------------------------------------
    # Altitude levels for different stations
    #---------------------------------------
    if loc.lower() == 'tab':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 95.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.0000, 2.0000, 1.0000, 0.2250
        ])
        sLat = 76.52
        sLon = 291.23  # 68.77 W = (360.0 - 68.77) = 291.23 E

    elif loc.lower() == 'mlo':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 95.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.3960
        ])

        sLat = 19.4
        sLon = 204.43  # 155.57 W = (360 - 155.57) = 204.43 E

    elif loc.lower() == 'fl0':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 94.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.0000, 2.0000, 1.6120
        ])

        sLat = 40.4
        sLon = 254.76  # 105.24 W = (360 - 105.24) = 254.76 E

        ###sLat = 42.73
        ###sLon = 253.68               #WYOBA

    #----------------------------
    # File and directory checking
    #----------------------------
    ckDir(NCEPdirShum, exitFlg=True)
    ckDir(NCEPdirHgt, exitFlg=True)
    ckDir(dataDir, exitFlg=True)
    ckFile(WACCMfile, exitFlg=True)

    #--------------------------------------------------------------------
    # Read WACCM monthly mean data. WACCM monthly mean file is ascending,
    # adjust so that it is descending. Also units are in km.
    #--------------------------------------------------------------------
    with open(WACCMfile, 'r') as fopen:
        lines = fopen.readlines()

    nlyrs = int(lines[0].strip().split()[0])
    s_ind = 3
    Z = np.flipud(
        np.array([
            float(row.strip().split()[0]) for row in lines[s_ind:nlyrs + s_ind]
        ]))
    waccmT = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))
    s_ind = 3 + nlyrs + 2
    waccmP = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))
    s_ind = 3 + nlyrs + 2 + nlyrs + 2
    waccmW = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))

    #--------------------------------------------
    # Walk through first level of directories in
    # data directory and collect directory names
    #--------------------------------------------
    dirLst = []
    for drs in os.walk(dataDir).next()[1]:

        #-------------------------------------------
        # Test directory to make sure it is a number
        #-------------------------------------------
        try:
            int(drs[0:4])
        except:
            continue

        if dRange.inRange(int(drs[0:4]), int(drs[4:6]), int(drs[6:8])):
            dirLst.append(dataDir + drs + '/')

    dirLst.sort()

    #--------------------------------------------------------
    # Loop through folders for individual years. This is done
    # because NCEP NetCDF files are by year. Therefore only
    # have to open and read yearly NCEP file once
    #--------------------------------------------------------
    yrList = dRange.yearList()

    for year in yrList:

        #-----------------------------
        # Find all folders within year
        #-----------------------------
        dirListYr = np.array(
            [d for d in dirLst if int(os.path.basename(d[:-1])[0:4]) == year])

        #-------------------------------
        # Open and read year NetCDF file
        #-------------------------------
        shumFile = NCEPdirShum + 'shum.' + str(year) + '.nc'
        ghghtFile = NCEPdirHgt + 'hgt.' + str(year) + '.nc'

        #-----------------------
        # Specific humidity file
        #-----------------------
        #with netcdf.netcdf_file(shumFile,'r',mmap=False) as shumF:      # Can only be done with scipy Ver > 0.12.0
        #shumF = netcdf.netcdf_file(shumFile,'r',mmap=False)
        shumObj = nc.Dataset(shumFile, 'r')
        PlvlShum = shumObj.variables['level']  # Starts at the surface
        timeShum = shumObj.variables['time']  # hours since 1-1-1 00:00:0.0
        latShum = shumObj.variables['lat']  # degrees_north
        lonShum = shumObj.variables['lon']  # degrees_east
        shum = shumObj.variables[
            'shum']  # Units: [kg/kg]. Dimensions: [time][vert][lat][lon] Only goes to 300mb!!

        PlvlShum = PlvlShum[:]
        timeShum = timeShum[:]
        latShum = latShum[:]
        lonShum = lonShum[:]
        shum = shum[:]

        shumObj.close()

        #----------------------------------------
        # Convert Specific humidity from kg/kg to
        # molecules/molecules
        #----------------------------------------
        shum = shum * 1.608

        #-----------------------------------------------
        # If not interpolating point in NCEP re-analysis
        # find closes lat lon indicies
        #-----------------------------------------------
        if not interpFlg:
            latind = findCls(latShum, sLat)
            lonind = findCls(lonShum, sLon)

        #------------------------------------------------------
        # Convert hours since 1-1-1 00:00:00 to datetime object
        # NCEP reanalysis uses udunits for encoding times,
        # meaning they don't follow standard leap year
        # convention (whatever this means?). Must follow some
        # leap year convention, but not clear. Therefore, take
        # the first time in file as 1-1-YEAR.
        #------------------------------------------------------
        timeHrs = timeShum - timeShum[0]
        timeAll = np.array([
            dt.datetime(year, 1, 1) + dt.timedelta(hours=int(h))
            for h in timeHrs
        ])

        #-------------------------
        # Geopotential Height file
        #-------------------------
        #with netcdf.netcdf_file(ghghtFile,'r',mmap=False) as gHghtF:      # Can only be done with scipy Ver > 0.12.0
        #gHghtF = netcdf.netcdf_file(ghghtFile,'r',mmap=False)
        gHghtF = nc.Dataset(ghghtFile, 'r')
        hgt = gHghtF.variables[
            'hgt']  # Height in [meters]. Dimensions: [time][vert][lat][lon]
        PlvlHght = gHghtF.variables['level']

        hgt = hgt[:]
        PlvlHght = PlvlHght[:]

        gHghtF.close()
        #------------------------------------------
        # Loop through all folders in specific year
        #------------------------------------------
        for sngDir in dirListYr:

            #----------------------------
            # Get date in datetime format
            #----------------------------
            oneDay = dt.datetime(int(os.path.basename(sngDir[:-1])[0:4]),
                                 int(os.path.basename(sngDir[:-1])[4:6]),
                                 int(os.path.basename(sngDir[:-1])[6:8]))

            #--------------------------------------------------
            # Find month index for monthly WACCM water profiles
            #--------------------------------------------------
            mnthInd = oneDay.month - 1  # -1 because January is in the 0th column

            #--------------------------------------
            # Get hgt and specific humidity for day
            #--------------------------------------
            ind = np.where(timeAll == oneDay)[0]
            dayHghtMat = np.squeeze(hgt[ind, :, :, :])
            dayShumMat = np.squeeze(shum[ind, :, :, :])

            #-----------------------------------------------------------
            # 'Unpack' the data => (data[int])*scale_factor + add_offset
            #-----------------------------------------------------------
            #dayHghtMat = dayHghtMat * hgt.scale_factor + hgt.add_offset
            #dayShumMat = dayShumMat * shum.scale_factor + shum.add_offset

            #-----------------------------------------------------
            # For each level interpolate hgt and specific humidity
            # based on latitude and longitude of site
            #-----------------------------------------------------
            dayHgt = np.zeros(np.shape(dayShumMat)[0])
            dayShum = np.zeros(np.shape(dayShumMat)[0])
            for lvl in range(0, np.shape(dayShumMat)[0]):

                dayHgtLvl = np.squeeze(dayHghtMat[lvl, :, :])
                if interpFlg:
                    dayHgt[lvl] = interp2d(lonShum,
                                           latShum,
                                           dayHgtLvl,
                                           kind='linear',
                                           bounds_error=True)(sLon, sLat)
                else:
                    dayHgt[lvl] = dayHgtLvl[latind, lonind]

                dayShumLvl = np.squeeze(dayShumMat[lvl, :, :])
                if interpFlg:
                    dayShum[lvl] = interp2d(lonShum,
                                            latShum,
                                            dayShumLvl,
                                            kind='linear',
                                            bounds_error=True)(sLon, sLat)
                else:
                    dayShum[lvl] = dayShumLvl[latind, lonind]

            dayHgt.astype(float)
            dayShum.astype(float)
            dayHgt = dayHgt / 1000.0  # Convert height units [m] => [km]

            #---------------------------------------------------------
            # Construct specific humidity and height profiles for
            # interpolation on to the sfit input grid which is the
            # same as the WACCM height in monthly profile file.
            # NCEP reanalysis data only goes to 300mb therefore,
            # merge with monthly averaged WACCM water profiles > 300mb
            #---------------------------------------------------------
            NCEPtop = dayHgt[-1]
            topInd = np.argmin(
                abs(Z - NCEPtop)
            )  # Where top of NCEP reanalysis fits in WACCM grid height

            #Zin  = np.concatenate( ( Z[0:(topInd-nSkip)]             , np.flipud(dayHgt)) , axis=1 )
            #SHin = np.concatenate( ( waccmW[0:(topInd-nSkip),mnthInd], np.flipud(dayShum)), axis=1 )

            #Remove axis=1
            Zin = np.concatenate((Z[0:(topInd - nSkip)], np.flipud(dayHgt)))
            SHin = np.concatenate((waccmW[0:(topInd - nSkip),
                                          mnthInd], np.flipud(dayShum)))

            #--------------------------------------------------------------
            # Interpolate to specific humidity on WACCM grid. X data must
            # be increasing => flip dimensions and then flip back
            #--------------------------------------------------------------
            if logFlg:
                SHout = np.exp(
                    np.flipud(
                        intrpUniSpl(np.flipud(Zin),
                                    np.log(np.flipud(SHin)),
                                    k=intrpOrder)(np.flipud(Z))))
            else:
                SHout = np.flipud(
                    intrpUniSpl(np.flipud(Zin), np.flipud(SHin),
                                k=intrpOrder)(np.flipud(Z)))

            #---------------------
            # Write out water file
            #---------------------
            with open(sngDir + 'w-120.' + verW, 'w') as fopen:
                fopen.write(
                    '    1     H2O from NCEP reanalysis and WACCM V6 monthly mean \n'
                )

                for row in segmnt(SHout, 5):
                    strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                    fopen.write(strformat.format(*row))

            #--------------------
            # Create plots to pdf
            #COMMENTED BELOW BY IVAN: CHECK MATPLOT PLT ERROR
            #--------------------
            pdfsav = PdfPages(sngDir + 'WaterProfile.pdf')

            fig1, ax1 = plt.subplots()
            ax1.plot(SHout, Z, 'rx-', label='Interpolated SH')
            ax1.plot(waccmW[:, mnthInd], Z, 'bx-', label='WACCM V6 SH')
            ax1.plot(dayShum, dayHgt, 'kx-', label='NCEP Reanalysis SH')
            ax1.grid(True, which='both')
            ax1.legend(prop={'size': 9})
            ax1.set_ylabel('Altitude [km]')
            ax1.set_xlabel('VMR [ppv]')
            ax1.tick_params(axis='x', which='both', labelsize=8)
            ax1.set_ylim((Z[-1], 60))
            ax1.set_xlim((0, np.max((waccmW[-1, mnthInd], dayShum[-1]))))
            ax1.set_title(oneDay)

            pdfsav.savefig(fig1, dpi=250)

            fig2, ax2 = plt.subplots()
            ax2.plot(SHout, Z, 'rx-', label='Interpolated SH')
            ax2.plot(waccmW[:, mnthInd], Z, 'bx-', label='WACCM V6 SH')
            ax2.plot(dayShum, dayHgt, 'kx-', label='NCEP Reanalysis SH')
            ax2.grid(True, which='both')
            ax2.legend(prop={'size': 9})
            ax2.set_ylabel('Altitude [km]')
            ax2.set_xlabel('log VMR [ppv]')
            ax2.tick_params(axis='x', which='both', labelsize=8)
            ax2.set_xscale('log')
            ax2.set_ylim((Z[-1], 60))
            ax2.set_xlim((0, np.max((waccmW[-1, mnthInd], dayShum[-1]))))
            ax2.set_title(oneDay)

            pdfsav.savefig(fig2, dpi=250)

            pdfsav.close()

            print 'Finished processing folder: {}'.format(sngDir)
Beispiel #4
0
def main(argv):
    
    #------------------
    # Set default flags
    #------------------
    logFile  = False    
    
    #---------------------------------
    # Retrieve command line arguments 
    #---------------------------------
    #------------------------------------------------------------------------------------------------------------#                                             
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'i:l:')

    except getopt.GetoptError as err:
        print str(err)
        usage()
        sys.exit()
        
    #-----------------------------
    # Parse command line arguments
    #-----------------------------
    for opt, arg in opts:
        
        #-----------
        # Input file
        #-----------
        if opt == '-i':           
            inputFile = arg
            
            # Check if file exists
            ckFile(inputFile,True)
            
        # Option for Log File
        elif opt == '-l':
            if arg: logDir = arg
            else:   logDir = os.getcwd() +'/'
            logFile = True        
            
        #------------------
        # Unhandled options
        #------------------
        else:
            print 'Unhandled option: ' + opt
            usage()
            sys.exit()
    #------------------------------------------------------------------------------------------------------------#                                
       
    #---------------------------------------
    # Hard coded NCEP pressure values [mbar]
    #---------------------------------------
    nmcPress = np.array([0.4,1.0,2.0,5.0,10.0,30.0,50.0,70.0,100.0,150.0,200.0,250.0,300.0,400.0,500.0,700.0,850.0,1000.0])
       
    #----------------
    # Read input file
    #----------------
    inputs = {}
    execfile(inputFile, inputs)
    if '__builtins__' in inputs:
        del inputs['__builtins__']       
        
    #-----------------------------------
    # Check the existance of directories
    # and files given in input file
    #-----------------------------------
    # Check directory of NCEP nmc data                         
    if not ckDir(inputs['NCEPDir']):
        print 'NCEP nmc directory does not exist: ' + inputs['NCEPDir']
        sys.exit()
        
    # check if '/' is included at end of path
    if not( inputs['NCEPDir'].endswith('/') ):
        inputs['NCEPDir'] = inputs['NCEPDir'] + '/'   
        
    # Check directory for output                         
    if not ckDir(inputs['outBaseDir']):
        print 'Output base directory does not exist: ' + inputs['outBaseDir']
        sys.exit()
        
    # check if '/' is included at end of path
    if not( inputs['outBaseDir'].endswith('/') ):
        inputs['outBaseDir'] = inputs['outBaseDir'] + '/'       

    if logFile:
        # Check directory for log file                         
        if not ckDir(logDir):
            print 'Log File directory does not exist: ' + logDir
            sys.exit()
            
        # check if '/' is included at end of path
        if not( logDir.endswith('/') ):
            logDir = logDir + '/'       

    # Check for station layer file if doing interpolation 
    ckFile(inputs['WACCMfile'],True)
    
    #--------------------
    # Initialize log file
    #--------------------
    if logFile:   
        logFile = logging.getLogger('1')
        logFile.setLevel(logging.INFO)
        hdlr1   = logging.FileHandler(logDir+ 'MissingNMCzpt.log',mode='w')
        fmt1    = logging.Formatter('%(asctime)s %(levelname)-8s %(message)s','%a, %d %b %Y %H:%M:%S')
        hdlr1.setFormatter(fmt1)
        logFile.addHandler(hdlr1)  
        logFile.info('**************** Starting Logging ***********************')
        logFile.info('Start year, month, day: {:4}, {:02}, {:02}'.format(inputs['iyear'],inputs['imnth'],inputs['iday'] ) )
        logFile.info('End year, month, day:   {:4}, {:02}, {:02}'.format(inputs['fyear'],inputs['fmnth'],inputs['fday'] ) )
        logFile.info('Station location:       ' + inputs['loc'])       
    
    #-------------------
    # Call to date class
    #-------------------
    DOI      = dr.DateRange(inputs['iyear'],inputs['imnth'],inputs['iday'],         # Create a dateRange instance object
                            inputs['fyear'],inputs['fmnth'],inputs['fday'])      
    daysList = DOI.dateList                                                         # Create a list of days within date range    
       
    #----------------------------------
    # Initialize missing count based on 
    # how many years present
    #----------------------------------
    years = DOI.yearList()
    misngCnt = {}
    for y in years: misngCnt.setdefault(y,0)
    
    #--------------------------------------------------------------------
    # Read WACCM monthly mean data. WACCM monthly mean file is ascending,
    # adjust so that it is descending. Also units are in km.
    #--------------------------------------------------------------------
    with open(inputs['WACCMfile'], 'r') as fopen:
        lines = fopen.readlines()
        
    nlyrs = int(lines[0].strip().split()[0])
    s_ind  = 3
    Z      = np.flipud( np.array( [ float(row.strip().split()[0]) for row in lines[s_ind:nlyrs+s_ind] ] ) )
    waccmT = np.flipud( np.array( [ [float(x) for x in line.strip().split()[1:]] for line in lines[s_ind:nlyrs+s_ind] ] ) )
    s_ind  = 3 + nlyrs + 2
    waccmP = np.flipud( np.array( [ [float(x) for x in line.strip().split()[1:]] for line in lines[s_ind:nlyrs+s_ind] ] ) )
    s_ind  = 3 + nlyrs + 2 + nlyrs + 2
    waccmW = np.flipud( np.array( [ [float(x) for x in line.strip().split()[1:]] for line in lines[s_ind:nlyrs+s_ind] ] ) )

    
    #----------------------
    # Loop through day list
    #----------------------
    for i,snglDay in enumerate(daysList):       
        waccmFlg = False
        
        #---------------------------
        # Determine output directory
        #---------------------------
        mnthstr = "{0:02d}".format(snglDay.month)
        yearstr = "{0:02d}".format(snglDay.year)
        daystr  = "{0:02d}".format(snglDay.day)        
        outDir  = inputs['outBaseDir'] + yearstr+mnthstr+daystr + '/'  
        
        #------------------------------
        # If input directory is missing
        # skip to next day
        #------------------------------
        if not ckDir(outDir): continue    
        
        #------------------------------------
        # Open and read yearly NCEP nmc files
        #------------------------------------
        if (not('nmcDate' in locals()) or (snglDay.year != lastyr) ):
            NMChgtFname  = inputs['NCEPDir'] + 'HgtNMC_' +  inputs['loc'].lower() + '_' + str(snglDay.year) + '.dat'
            NMCTempFname = inputs['NCEPDir'] + 'TempNMC_' + inputs['loc'].lower() + '_' + str(snglDay.year) + '.dat'

            #-------------------------------------
            # NCEP nmc height data along with date
            # Convert [m] => [km]
            #-------------------------------------
            with open(NMChgtFname, 'r') as fopen:
                lines = fopen.readlines()
                
            nmcDate    = np.array([dt.date(int(line.strip().split()[0][0:4]),
                                           int(line.strip().split()[0][4:6]),
                                           int(line.strip().split()[0][6:])) for line in lines if not('#' in line)])
            nmcHgtData = np.array( [ [float(x) for x in line.strip().split()[1:]] for line in lines if not('#' in line) ] )
            nmcHgtData[:] = nmcHgtData / 1000.0   # Convert [m] => [km]
            
            #--------------------------------
            # NCEP nmc Temperature data along 
            #--------------------------------
            with open(NMCTempFname, 'r') as fopen:
                lines = fopen.readlines()
            
            nmcTempData = np.array( [ [float(x) for x in line.strip().split()[1:]] for line in lines if not('#' in line) ] )
            
            #-----------------------------------
            # Set year of last profile processed
            #-----------------------------------
            lastyr = snglDay.year
                        
        #--------------------------------------------------
        # Merge Pressure, Temperatuer, and H2O data
        # from WACCM and NCEP nmc. 
        # Note: NCEP nmc has some missing values (-999.999)
        # Must provide one empty data point between WACCM
        # and NCEP nmc for interpolation
        #--------------------------------------------------        
        #--------------------------------
        # Get NCEP nmc and WACCM profiles
        # according to date
        #--------------------------------
        dateInd = np.where(nmcDate == snglDay)[0]
        mnthInd = (snglDay.month - 1)   # -1 because January is in 0th column

        
        #-------------------------------------
        # If date is entirely missing from nmc
        # use WACCM
        #-------------------------------------        
        if ( dateInd.size == 0 ):
            misngCnt[snglDay.year] += 1
            PressOut = waccmP[:,mnthInd]
            TempOut  = waccmT[:,mnthInd]     
            waccmFlg = True            
            
        #-----------------------------
        # Date exists in NMC data base
        #-----------------------------
        else:            
            dateInd = dateInd[0]
            # NCEP nmc
            tmpNMCPres   = nmcPress
            heightNMCprf = nmcHgtData[dateInd,:]
            tempNMCprf   = nmcTempData[dateInd,:]
            
            #-----------------------------------------
            # Look for missing values in NCEP nmc data
            # If only one missing value...remove, 
            # otherwise use WACCM data. Count number
            # of times per year WACCM is used
            #-----------------------------------------
            misHgt = np.where(heightNMCprf < -900)[0]
            misT   = np.where(tempNMCprf   < -900)[0]
            misAll = np.union1d( misHgt, misT )
          
            #---------------------------------------------
            # If union of missing temperatures and heights
            # is greater than 2 then use WACCM
            #---------------------------------------------
            if len( misAll ) > 2:
                misngCnt[snglDay.year] += 1
                PressOut = waccmP[:,mnthInd]
                TempOut  = waccmT[:,mnthInd]
                waccmFlg = True
               
            #-----------------------------------------------------------
            # If only two or none values missing, remove and interpolate
            #-----------------------------------------------------------
            else:
                tmpNMCPres[:]   = np.delete(tmpNMCPres,  misAll)
                heightNMCprf[:] = np.delete(heightNMCprf,misAll)                  
                     
                #----------------------------------------------------
                # Construct Height/Pressure profile for interpolation
                #----------------------------------------------------
                # Find top of NMC data
                nmcTop = heightNMCprf[0]
                
                # Where top of NMC fits in WACCM grid
                topInd = np.argmin( abs( Z - heightNMCprf[0] ) )
    
                #Take two points above top and concatonate
                #heightIn = np.concatenate( (Z[0:(topInd-inputs['npntSkip'])]             ,heightNMCprf), axis=1 )
                #pressIn  = np.concatenate( (waccmP[0:(topInd-inputs['npntSkip']),mnthInd],nmcPress)   , axis=1 )
                #tempIn   = np.concatenate( (waccmT[0:(topInd-inputs['npntSkip']),mnthInd],tempNMCprf) , axis=1 )
                
                #An error arise with the axis=1, so it was removed
                heightIn = np.concatenate( (Z[0:(topInd-inputs['npntSkip'])]             ,heightNMCprf))
                pressIn  = np.concatenate( (waccmP[0:(topInd-inputs['npntSkip']),mnthInd],nmcPress) )
                tempIn   = np.concatenate( (waccmT[0:(topInd-inputs['npntSkip']),mnthInd],tempNMCprf)  )

                
                #------------------------------------------------------------------
                # Interpolate to grid. X data must be increasing => flip dimensions
                # and then flip back
                #------------------------------------------------------------------
                PressOut = np.flipud( intrpUniSpl( np.flipud(heightIn), np.flipud(pressIn), k=inputs['Pintrp'])( np.flipud(Z) ) )
                TempOut  = np.flipud( intrpUniSpl( np.flipud(heightIn), np.flipud(tempIn),  k=inputs['Tintrp'])( np.flipud(Z) ) )

        #--------------------------------------
        # Write to log if NCEP data is not used
        #--------------------------------------
        if waccmFlg and logFile: logFile.error('NCEP nmc data not complete, WACCM profiles used for date: ' + str(snglDay) )    
           
        #-------------------
        # Write out ZPT file
        #-------------------
        with open(outDir+'ZPT.nmc.120', 'w') as fopen:
            fopen.write("{0:>5}{1:>5} \n".format(1,nlyrs))
            
            # Write altitude
            fopen.write("     ALTITUDE [km] \n")
            for row in segmnt(Z, 5):
                strformat = ','.join('{:>12.4f}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))
            
            # Write Pressure
            if waccmFlg: fopen.write("     PRESSURE from WACCM V5 monthly mean [mbar] \n")
            else:        fopen.write("     PRESSURE from interpolated NCEP nmc (up to {:5.2f}km) and WACCM V5 monthly mean [mbar] \n".format(nmcTop))
            for row in segmnt(PressOut,5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))                
                                                                              
            # Write Temperature
            if waccmFlg: fopen.write("     TEMPERATURE from WACCM V5 monthly mean [C] \n")
            else:        fopen.write("     TEMPERATURE from interpolated NCEP nmc (up to {:5.2f}km) and WACCM V5 monthly mean [C] \n".format(nmcTop))
            for row in segmnt(TempOut,5):
                strformat = ','.join('{:>12.4f}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))       
                           
        #---------------------
        # Write out water file
        #---------------------
        #-------------------------------------------------
        # Determine if previous water files already exists
        # If so rename the files add '.WACCM5'
        #-------------------------------------------------
        if inputs['mvOld']:
            preWtrFiles = gb.glob(outDir + 'w-120*')
            if len(preWtrFiles) > 0:
                for indFile in preWtrFiles: os.rename(indFile,indFile+'.WACCM5')
        
        with open(outDir+'w-120.v1','w') as fopen:
            fopen.write('    1     H2O from WACCM V5 monthly mean \n')
            for row in segmnt(waccmW[:,mnthInd],5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))              
            
        #--------------------
        # Create plots to pdf
        #--------------------
        if not waccmFlg:
           # Pressure
            plt.plot(PressOut,Z,'rx-',label='Interpolated Pressure')
            plt.plot(waccmP[:,mnthInd],Z,'bx-',label='WACCM V5 Pressure')
            plt.plot(tmpNMCPres,heightNMCprf,'kx-',label='NCEP nmc Pressure')
            plt.legend()
            plt.xlabel('Pressure [mbar]')
            plt.ylabel('log(Height) [km]')
            plt.xscale('log')
            plt.yscale('log')
            plt.ylim( Z[-1], Z[0] )
            ax = plt.gca()
            ax.set_title('Pressure vs Height for Date:{}, K = {:2.0f}, nskips = {:2.0f}'.format(str(snglDay),inputs['Pintrp'],inputs['npntSkip']))
            #ax.xaxis.set_major_locator(MultipleLocator(25))
            #ax.xaxis.set_minor_locator(MultipleLocator(5))
            plt.savefig(outDir+'PressureFigure.pdf',bbox_inches='tight')
            plt.close()
            
           ## Temperature
            plt.plot(TempOut,Z,'rx-', label='Interpolated Temperature')
            plt.plot(waccmT[:,mnthInd],Z,'bx-',label='WACCM V5 Temperature')
            plt.plot(tempNMCprf,heightNMCprf,'kx-',label='NCEP nmc Temperature')
            plt.legend()
            plt.xlabel('Temperature [C]')
            plt.ylabel('Height [km]')
            ##plt.yscale('log')
            plt.ylim( Z[-1], Z[0] )
            ax = plt.gca()
            #ax.xaxis.set_major_locator(MultipleLocator(25))
            #ax.xaxis.set_minor_locator(MultipleLocator(5))    
            ax.set_title('Temperature vs Height for Date:{}, K = {:2.0f}, nskips = {:2.0f}'.format(str(snglDay),inputs['Tintrp'],inputs['npntSkip']))
            plt.savefig(outDir+'TemperatureFigure.pdf',bbox_inches='tight')
            plt.close()
                   
    #-------------------------------------
    # Print out number of days where NCEP
    # nmc data is incomplete => WACCM used
    #-------------------------------------
    if logFile:
            for yrs in misngCnt:
                logFile.info('Missing days for year ({:4}) = {:4}'.format(yrs,misngCnt[yrs]))
Beispiel #5
0
def main():

    #----------------
    # Initializations
    #----------------
    loc = 'tab'  # Name of station location
    gasName = 'h2o'  # Name of gas
    ver = 'Current_ERA'  # Name of retrieval version to process
    verW = 'v99'  # version 99 is used for individual retrievals at specific times

    #------
    # Flags
    #------
    fltrFlg = True  # Flag to filter the data
    maxrms = 2  # Max Fit RMS to filter data. Data is filtered according to <= maxrms
    pltFlg = True
    logFlg = True  # Flag to do interpolation of log of water

    #-------------------
    # Interpolation Oder
    #-------------------
    intrpOrder = 1  # Order of interpolation

    #-----------------------
    # Date Range of interest
    #-----------------------
    iyear = 2017
    imnth = 8
    iday = 1
    fyear = 2017
    fmnth = 8
    fday = 31

    #---------------------
    # Input Data Directory
    #---------------------
    retDir = '/data1/ebaumer/' + loc.lower() + '/' + gasName.lower(
    ) + '/' + ver + '/'  # Retrieval data directory

    #----------------------
    # Output Data Directory
    #----------------------
    dataDir = '/data1/' + loc.lower() + '/'

    #------
    # Files
    #------
    ctlFile = '/data1/ebaumer/' + loc.lower() + '/' + gasName.lower(
    ) + '/' + 'x.' + gasName.lower() + '/sfit4.ctl'

    #---------------------------------------
    # Altitude levels for different stations
    #---------------------------------------
    if loc.lower() == 'tab':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 95.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.0000, 2.0000, 1.0000, 0.2250
        ])
        sLat = 76.52
        sLon = 291.23  # 68.77 W = (360.0 - 68.77) = 291.23 E

    elif loc.lower() == 'mlo':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 95.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.3960
        ])

        sLat = 19.4
        sLon = 204.43  # 155.57 W = (360 - 155.57) = 204.43 E

    elif loc.lower() == 'fl0':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 94.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.0000, 2.0000, 1.6120
        ])

        sLat = 40.4
        sLon = 254.76  # 105.24 W = (360 - 105.24) = 254.76 E

    #----------------------------
    # File and directory checking
    #----------------------------
    ckDir(retDir, exitFlg=True)
    ckDir(dataDir, exitFlg=True)
    ckFile(ctlFile, exitFlg=True)

    #-------------------------------------
    # Create instance of output data class
    #-------------------------------------
    statDataCl = dc.ReadOutputData(retDir, '', ctlFile, iyear, imnth, iday,
                                   fyear, fmnth, fday)

    #--------------
    # Read profiles
    #--------------
    statDataCl.readprfs([statDataCl.PrimaryGas],
                        retapFlg=1)  # Retrieved Profiles

    #----------------------------------
    # Read Summary data (For filtering)
    #----------------------------------
    statDataCl.readsummary()

    #----------------------------
    # Get retrieved water profile
    #----------------------------
    H2OrPrf = np.asarray(statDataCl.rprfs['H2O'])
    dates = np.asarray(statDataCl.rprfs['date'])
    alt = np.asarray(statDataCl.rprfs['ZBAR'][0, :])

    #--------------------
    # Call to filter data
    #--------------------
    if fltrFlg:
        statDataCl.fltrData(statDataCl.PrimaryGas,
                            mxrms=maxrms,
                            rmsFlg=True,
                            tcFlg=True,
                            pcFlg=True,
                            cnvrgFlg=True)
    else:
        statDataCl.inds = np.array([])

    #-----------------------------------
    # Remove profiles based on filtering
    #-----------------------------------
    H2OrPrf = np.delete(H2OrPrf, statDataCl.inds, axis=0)
    dates = np.delete(dates, statDataCl.inds)

    #---------------------------
    # Iterate through retrievals
    #---------------------------
    for i, sngDay in enumerate(dates):

        #----------------------------
        # Get corresponding directory
        #----------------------------
        baseDir = dataDir + '{0:04d}{1:02d}{2:02d}/'.format(
            sngDay.year, sngDay.month, sngDay.day)
        ckDir(baseDir, exitFlg=True)

        #-----------------------------------
        # Interpolate retrieved profile onto
        # sfit input grid
        #-----------------------------------
        if logFlg:
            H2Oout = np.exp(
                np.flipud(
                    intrpUniSpl(np.flipud(alt),
                                np.log(np.flipud(H2OrPrf[i])),
                                k=intrpOrder)(np.flipud(Z))))
        else:
            H2Oout = np.flipud(
                intrpUniSpl(np.flipud(alt),
                            np.flipud(H2OrPrf[i]),
                            k=intrpOrder)(np.flipud(Z)))

        #---------------------
        # Write out water file
        #---------------------
        tstamp = '{0:04d}{1:02d}{2:02d}.{3:02d}{4:02d}{5:02d}'.format(
            sngDay.year, sngDay.month, sngDay.day, sngDay.hour, sngDay.minute,
            sngDay.second)

        with open(baseDir + 'w-120.' + tstamp + '.' + verW, 'w') as fopen:
            fopen.write('    1     H2O from sfit4 retrieval \n')

            for row in segmnt(H2Oout, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #--------------------
        # Create plots to pdf
        #--------------------
        if pltFlg:
            pdfsav = PdfPages(baseDir + 'Ret_' + tstamp + '_WaterProfile.pdf')

            fig1, ax1 = plt.subplots()
            ax1.plot(H2Oout, Z, 'rx-', label='Interpolated Water Profile')
            ax1.plot(H2OrPrf[i],
                     alt,
                     'bx-',
                     label='Original Retrieved Water Profile')
            ax1.grid(True, which='both')
            ax1.legend(prop={'size': 9})
            ax1.set_ylabel('Altitude [km]')
            ax1.set_xlabel('VMR')
            ax1.tick_params(axis='x', which='both', labelsize=8)
            ax1.set_ylim((Z[-1], 60))
            #ax1.set_xlim((0,np.max((waccmW[-1,mnthInd],dayShum[-1]))))
            ax1.set_title(sngDay)

            pdfsav.savefig(fig1, dpi=250)

            pdfsav.close()
Beispiel #6
0
def main():

    #---------
    # Location
    #---------
    loc = 'tab'

    #------------------------------------
    # Version number to append water file
    #------------------------------------
    verW = 'v4'  #version for daily Profile
    verW_t = 'v66'  #version for 6-hourly profiles

    #-----------------------------------------
    # Interpolation flag for NCEP re-analysis:
    # False = Nearest point. True = linear
    #-----------------------------------------
    interpFlg = False

    #---------------------
    # Interpolation things
    #---------------------
    nSkip = 3  # Number of points to skip when merging WACCM and NCEP profiles
    intrpOrder = 1  # Order of interpolation
    logFlg = False  # Flag to do interpolation of log of water

    #-----------------------
    # Date Range of interest
    #-----------------------
    iyear = 2017
    imnth = 6
    iday = 1
    fyear = 2017
    fmnth = 12
    fday = 31

    #------------------------------
    # ERA Reanalysis data directory
    #------------------------------
    ERAdir = '/data1/ancillary_data/ERAdata/'

    #---------------
    # Data Directory
    #---------------
    dataDir = '/data1/' + loc.lower() + '/'

    #-------------------------
    # WACCM monthly means file
    #-------------------------
    WACCMfile = '/data/Campaign/' + loc.upper(
    ) + '/waccm/WACCM_pTW-meanV6.' + loc.upper()

    #---------------------
    # Establish date range
    #---------------------
    dRange = sc.DateRange(iyear, imnth, iday, fyear, fmnth, fday)

    #---------------------------------------
    # Altitude levels for different stations
    #---------------------------------------
    if loc.lower() == 'tab':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 95.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.0000, 2.0000, 1.0000, 0.2250
        ])
        sLat = 76.52
        sLon = 291.23  # 68.77 W = (360.0 - 68.77) = 291.23 E

    elif loc.lower() == 'mlo':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 95.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.3960
        ])

        sLat = 19.4
        sLon = 204.43  # 155.57 W = (360 - 155.57) = 204.43 E

    elif loc.lower() == 'fl0':
        Z = np.array([
            120.0000, 110.0000, 100.0000, 94.0000, 90.0000, 85.0000, 80.0000,
            75.0000, 70.0000, 65.0000, 60.0000, 55.0000, 50.0000, 48.0000,
            46.0000, 44.0000, 42.0000, 40.0000, 38.0000, 36.0000, 34.0000,
            32.0000, 30.0000, 28.0000, 26.0000, 24.0000, 22.0000, 20.0000,
            18.0000, 16.0000, 14.0000, 12.0000, 10.0000, 9.0000, 8.0000,
            7.0000, 6.0000, 5.0000, 4.0000, 3.0000, 2.0000, 1.6120
        ])

        sLat = 40.4
        sLon = 254.76  # 105.24 W = (360 - 105.24) = 254.76 E

    #----------------------------
    # File and directory checking
    #----------------------------
    ckDir(ERAdir, exitFlg=True)
    ckDir(dataDir, exitFlg=True)
    ckFile(WACCMfile, exitFlg=True)

    #--------------------------------------------------------------------
    # Read WACCM monthly mean data. WACCM monthly mean file is ascending,
    # adjust so that it is descending. Also units are in km.
    #--------------------------------------------------------------------
    with open(WACCMfile, 'r') as fopen:
        lines = fopen.readlines()

    nlyrs = int(lines[0].strip().split()[0])
    s_ind = 3
    Z = np.flipud(
        np.array([
            float(row.strip().split()[0]) for row in lines[s_ind:nlyrs + s_ind]
        ]))
    waccmT = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))
    s_ind = 3 + nlyrs + 2
    waccmP = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))
    s_ind = 3 + nlyrs + 2 + nlyrs + 2
    waccmW = np.flipud(
        np.array([[float(x) for x in line.strip().split()[1:]]
                  for line in lines[s_ind:nlyrs + s_ind]]))

    #--------------------------------------------
    # Walk through first level of directories in
    # data directory and collect directory names
    #--------------------------------------------
    dirLst = []
    for drs in os.walk(dataDir).next()[1]:

        #-------------------------------------------
        # Test directory to make sure it is a number
        #-------------------------------------------
        try:
            int(drs[0:4])
        except:
            continue

        if dRange.inRange(int(drs[0:4]), int(drs[4:6]), int(drs[6:8])):
            dirLst.append(dataDir + drs + '/')

    dirLst.sort()

    #------------------------------------------
    # Loop through all folders in specific year
    #------------------------------------------
    for sngDir in dirLst:

        #----------------------------
        # Get date in datetime format
        #----------------------------
        oneDay = dt.datetime(int(os.path.basename(sngDir[:-1])[0:4]),
                             int(os.path.basename(sngDir[:-1])[4:6]),
                             int(os.path.basename(sngDir[:-1])[6:8]))

        #--------------------------------------------------
        # Find month index for monthly WACCM water profiles
        #--------------------------------------------------
        mnthInd = oneDay.month - 1  # -1 because January is in the 0th column

        #-------------------------------------------
        # Open daily ERA interm files 00, 06, 12, 18
        #-------------------------------------------
        YYYY = "{0:04d}".format(oneDay.year)
        MM = "{0:02d}".format(oneDay.month)
        DD = "{0:02d}".format(oneDay.day)
        ERA_F1 = ERAdir + YYYY + MM + '/' + 'ei.oper.an.pl.regn128sc.' + YYYY + MM + DD + '00.nc'
        ERA_F2 = ERAdir + YYYY + MM + '/' + 'ei.oper.an.pl.regn128sc.' + YYYY + MM + DD + '06.nc'
        ERA_F3 = ERAdir + YYYY + MM + '/' + 'ei.oper.an.pl.regn128sc.' + YYYY + MM + DD + '12.nc'
        ERA_F4 = ERAdir + YYYY + MM + '/' + 'ei.oper.an.pl.regn128sc.' + YYYY + MM + DD + '18.nc'

        f1 = netcdf.netcdf_file(ERA_F1, 'r', mmap=False)
        f2 = netcdf.netcdf_file(ERA_F2, 'r', mmap=False)
        f3 = netcdf.netcdf_file(ERA_F3, 'r', mmap=False)
        f4 = netcdf.netcdf_file(ERA_F4, 'r', mmap=False)

        #-----------------------------------
        # Lat and lon should be the same for
        # all files. Just grab once
        #-----------------------------------
        lat = f1.variables['g4_lat_1']
        lon = f1.variables['g4_lon_2']
        Plvl = f1.variables['lv_ISBL0']
        nlvls = np.shape(Plvl[:])[0]

        Q_00 = f1.variables['Q_GDS4_ISBL']
        Q_06 = f2.variables['Q_GDS4_ISBL']
        Q_12 = f3.variables['Q_GDS4_ISBL']
        Q_18 = f4.variables['Q_GDS4_ISBL']

        Z_00 = f1.variables['Z_GDS4_ISBL']
        Z_06 = f2.variables['Z_GDS4_ISBL']
        Z_12 = f3.variables['Z_GDS4_ISBL']
        Z_18 = f4.variables['Z_GDS4_ISBL']

        PV_00 = f1.variables['PV_GDS4_ISBL']
        PV_06 = f2.variables['PV_GDS4_ISBL']
        PV_12 = f3.variables['PV_GDS4_ISBL']
        PV_18 = f4.variables['PV_GDS4_ISBL']

        T_00 = f1.variables['T_GDS4_ISBL']
        T_06 = f2.variables['T_GDS4_ISBL']
        T_12 = f3.variables['T_GDS4_ISBL']
        T_18 = f4.variables['T_GDS4_ISBL']

        f1.close()
        f2.close()
        f3.close()
        f4.close()

        #-----------------------------------------------
        # If not interpolating point in NCEP re-analysis
        # find closes lat lon indicies
        #-----------------------------------------------
        if not interpFlg:
            latind = findCls(lat[:], sLat)
            lonind = findCls(lon[:], sLon)

        #-----------------------------------------------------
        # For each level interpolate hgt and specific humidity
        # based on latitude and longitude of site
        #-----------------------------------------------------
        Hgt_00 = np.zeros(nlvls)
        Hgt_06 = np.zeros(nlvls)
        Hgt_12 = np.zeros(nlvls)
        Hgt_18 = np.zeros(nlvls)

        Qint_00 = np.zeros(nlvls)
        Qint_06 = np.zeros(nlvls)
        Qint_12 = np.zeros(nlvls)
        Qint_18 = np.zeros(nlvls)

        Tint_00 = np.zeros(nlvls)
        Tint_06 = np.zeros(nlvls)
        Tint_12 = np.zeros(nlvls)
        Tint_18 = np.zeros(nlvls)

        PVint_00 = np.zeros(nlvls)
        PVint_06 = np.zeros(nlvls)
        PVint_12 = np.zeros(nlvls)
        PVint_18 = np.zeros(nlvls)

        for lvl in range(0, nlvls):
            HgtOneLvl_00 = np.squeeze(Z_00[lvl, :, :])
            HgtOneLvl_06 = np.squeeze(Z_06[lvl, :, :])
            HgtOneLvl_12 = np.squeeze(Z_12[lvl, :, :])
            HgtOneLvl_18 = np.squeeze(Z_18[lvl, :, :])

            Q_OneLvl_00 = np.squeeze(Q_00[lvl, :, :])
            Q_OneLvl_06 = np.squeeze(Q_06[lvl, :, :])
            Q_OneLvl_12 = np.squeeze(Q_12[lvl, :, :])
            Q_OneLvl_18 = np.squeeze(Q_18[lvl, :, :])

            T_OneLvl_00 = np.squeeze(T_00[lvl, :, :])
            T_OneLvl_06 = np.squeeze(T_06[lvl, :, :])
            T_OneLvl_12 = np.squeeze(T_12[lvl, :, :])
            T_OneLvl_18 = np.squeeze(T_18[lvl, :, :])

            PV_OneLvl_00 = np.squeeze(PV_00[lvl, :, :])
            PV_OneLvl_06 = np.squeeze(PV_06[lvl, :, :])
            PV_OneLvl_12 = np.squeeze(PV_12[lvl, :, :])
            PV_OneLvl_18 = np.squeeze(PV_18[lvl, :, :])

            if interpFlg:
                Hgt_00[lvl] = interp2d(lon[:],
                                       lat[:],
                                       HgtOneLvl_00,
                                       kind='linear',
                                       bounds_error=True)(sLon, sLat)
                Hgt_06[lvl] = interp2d(lon[:],
                                       lat[:],
                                       HgtOneLvl_06,
                                       kind='linear',
                                       bounds_error=True)(sLon, sLat)
                Hgt_12[lvl] = interp2d(lon[:],
                                       lat[:],
                                       HgtOneLvl_12,
                                       kind='linear',
                                       bounds_error=True)(sLon, sLat)
                Hgt_18[lvl] = interp2d(lon[:],
                                       lat[:],
                                       HgtOneLvl_18,
                                       kind='linear',
                                       bounds_error=True)(sLon, sLat)

                Qint_00[lvl] = interp2d(lon[:],
                                        lat[:],
                                        Q_OneLvl_00,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)
                Qint_06[lvl] = interp2d(lon[:],
                                        lat[:],
                                        Q_OneLvl_06,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)
                Qint_12[lvl] = interp2d(lon[:],
                                        lat[:],
                                        Q_OneLvl_12,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)
                Qint_18[lvl] = interp2d(lon[:],
                                        lat[:],
                                        Q_OneLvl_18,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)

                Tint_00[lvl] = interp2d(lon[:],
                                        lat[:],
                                        T_OneLvl_00,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)
                Tint_06[lvl] = interp2d(lon[:],
                                        lat[:],
                                        T_OneLvl_06,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)
                Tint_12[lvl] = interp2d(lon[:],
                                        lat[:],
                                        T_OneLvl_12,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)
                Tint_18[lvl] = interp2d(lon[:],
                                        lat[:],
                                        T_OneLvl_18,
                                        kind='linear',
                                        bounds_error=True)(sLon, sLat)

                PVint_00[lvl] = interp2d(lon[:],
                                         lat[:],
                                         PV_OneLvl_00,
                                         kind='linear',
                                         bounds_error=True)(sLon, sLat)
                PVint_06[lvl] = interp2d(lon[:],
                                         lat[:],
                                         PV_OneLvl_06,
                                         kind='linear',
                                         bounds_error=True)(sLon, sLat)
                PVint_12[lvl] = interp2d(lon[:],
                                         lat[:],
                                         PV_OneLvl_12,
                                         kind='linear',
                                         bounds_error=True)(sLon, sLat)
                PVint_18[lvl] = interp2d(lon[:],
                                         lat[:],
                                         PV_OneLvl_18,
                                         kind='linear',
                                         bounds_error=True)(sLon, sLat)

            else:
                Hgt_00[lvl] = HgtOneLvl_00[latind, lonind]
                Hgt_06[lvl] = HgtOneLvl_06[latind, lonind]
                Hgt_12[lvl] = HgtOneLvl_12[latind, lonind]
                Hgt_18[lvl] = HgtOneLvl_18[latind, lonind]

                Qint_00[lvl] = Q_OneLvl_00[latind, lonind]
                Qint_06[lvl] = Q_OneLvl_06[latind, lonind]
                Qint_12[lvl] = Q_OneLvl_12[latind, lonind]
                Qint_18[lvl] = Q_OneLvl_18[latind, lonind]

                Tint_00[lvl] = T_OneLvl_00[latind, lonind]
                Tint_06[lvl] = T_OneLvl_06[latind, lonind]
                Tint_12[lvl] = T_OneLvl_12[latind, lonind]
                Tint_18[lvl] = T_OneLvl_18[latind, lonind]

                PVint_00[lvl] = PV_OneLvl_00[latind, lonind]
                PVint_06[lvl] = PV_OneLvl_06[latind, lonind]
                PVint_12[lvl] = PV_OneLvl_12[latind, lonind]
                PVint_18[lvl] = PV_OneLvl_18[latind, lonind]

        #----------------------------------------
        # Convert Specific humidity from kg/kg to
        # molecules/molecules
        #----------------------------------------
        Qint_00 = Qint_00 * 1.608
        Qint_06 = Qint_06 * 1.608
        Qint_12 = Qint_12 * 1.608
        Qint_18 = Qint_18 * 1.608

        #-------------------------------------
        # Create daily averages of 00,06,12,18
        #-------------------------------------
        Q_day = np.mean(np.vstack((Qint_00, Qint_06, Qint_12, Qint_18)),
                        axis=0)
        Z_day = np.mean(np.vstack((Hgt_00, Hgt_06, Hgt_12, Hgt_18)), axis=0)
        T_day = np.mean(np.vstack((Tint_00, Tint_06, Tint_12, Tint_18)),
                        axis=0)
        PV_day = np.mean(np.vstack((PVint_00, PVint_06, PVint_12, PVint_18)),
                         axis=0)

        #--------------------------------
        # Convert Height [m^2 s^-2] => km
        #--------------------------------
        Z_day = Z_day / 9.81 / 1000.0

        #---------------------------------------------------------
        # Construct specific humidity and height profiles for
        # interpolation on to the sfit input grid which is the
        # same as the WACCM height in monthly profile file.
        # NCEP reanalysis data only goes to 300mb therefore,
        # merge with monthly averaged WACCM water profiles > 300mb
        #---------------------------------------------------------
        ERAtop = Z_day[0]
        topInd = np.argmin(abs(
            Z -
            ERAtop))  # Where top of NCEP reanalysis fits in WACCM grid height

        #Zin  = np.concatenate( ( Z[0:(topInd-nSkip)]             , Z_day), axis=1 )
        #SHin = np.concatenate( ( waccmW[0:(topInd-nSkip),mnthInd], Q_day), axis=1 )

        #Remove axis=0

        Zin = np.concatenate((Z[0:(topInd - nSkip)], Z_day))

        SHin = np.concatenate((waccmW[0:(topInd - nSkip), mnthInd], Q_day))

        SHin_00 = np.concatenate((waccmW[0:(topInd - nSkip),
                                         mnthInd], Qint_00))
        SHin_06 = np.concatenate((waccmW[0:(topInd - nSkip),
                                         mnthInd], Qint_06))
        SHin_12 = np.concatenate((waccmW[0:(topInd - nSkip),
                                         mnthInd], Qint_12))
        SHin_18 = np.concatenate((waccmW[0:(topInd - nSkip),
                                         mnthInd], Qint_18))

        #--------------------------------------------------------------
        # Interpolate to specific humidity on WACCM grid. X data must
        # be increasing => flip dimensions and then flip back
        #--------------------------------------------------------------
        if logFlg:
            SHout = np.exp(
                np.flipud(
                    intrpUniSpl(np.flipud(Zin),
                                np.log(np.flipud(SHin)),
                                k=intrpOrder)(np.flipud(Z))))
            SHout_00 = np.exp(
                np.flipud(
                    intrpUniSpl(np.flipud(Zin),
                                np.log(np.flipud(SHin_00)),
                                k=intrpOrder)(np.flipud(Z))))
            SHout_06 = np.exp(
                np.flipud(
                    intrpUniSpl(np.flipud(Zin),
                                np.log(np.flipud(SHin_06)),
                                k=intrpOrder)(np.flipud(Z))))
            SHout_12 = np.exp(
                np.flipud(
                    intrpUniSpl(np.flipud(Zin),
                                np.log(np.flipud(SHin_12)),
                                k=intrpOrder)(np.flipud(Z))))
            SHout_18 = np.exp(
                np.flipud(
                    intrpUniSpl(np.flipud(Zin),
                                np.log(np.flipud(SHin_18)),
                                k=intrpOrder)(np.flipud(Z))))

        else:
            SHout = np.flipud(
                intrpUniSpl(np.flipud(Zin), np.flipud(SHin),
                            k=intrpOrder)(np.flipud(Z)))
            SHout_00 = np.flipud(
                intrpUniSpl(np.flipud(Zin), np.flipud(SHin_00),
                            k=intrpOrder)(np.flipud(Z)))
            SHout_06 = np.flipud(
                intrpUniSpl(np.flipud(Zin), np.flipud(SHin_06),
                            k=intrpOrder)(np.flipud(Z)))
            SHout_12 = np.flipud(
                intrpUniSpl(np.flipud(Zin), np.flipud(SHin_12),
                            k=intrpOrder)(np.flipud(Z)))
            SHout_18 = np.flipud(
                intrpUniSpl(np.flipud(Zin), np.flipud(SHin_18),
                            k=intrpOrder)(np.flipud(Z)))

        #------------------------
        # remove v4 for 6-hourly files
        #------------------------
        waterFiles_test = glob.glob(sngDir + 'w-120*' + verW)
        waterFiles_test = [
            i for i in waterFiles_test if len(os.path.basename(i)) > 10
        ]

        if len(waterFiles_test) >= 1:
            for f in waterFiles_test:
                os.remove(f)

        #---------------------
        # Write out water file at 00
        #---------------------
        with open(sngDir + 'w-120.' + YYYY + MM + DD + '.000000.' + verW_t,
                  'w') as fopen:
            fopen.write(
                '    1     H2O from ERA reanalysis and WACCM V6 monthly mean \n'
            )

            for row in segmnt(SHout_00, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #---------------------
        # Write out water file at 06
        #---------------------
        with open(sngDir + 'w-120.' + YYYY + MM + DD + '.060000.' + verW_t,
                  'w') as fopen:
            fopen.write(
                '    1     H2O from ERA reanalysis and WACCM V6 monthly mean \n'
            )

            for row in segmnt(SHout_06, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #---------------------
        # Write out water file at 12
        #---------------------
        with open(sngDir + 'w-120.' + YYYY + MM + DD + '.120000.' + verW_t,
                  'w') as fopen:
            fopen.write(
                '    1     H2O from ERA reanalysis and WACCM V6 monthly mean \n'
            )

            for row in segmnt(SHout_12, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #---------------------
        # Write out water file at 18
        #---------------------
        with open(sngDir + 'w-120.' + YYYY + MM + DD + '.180000.' + verW_t,
                  'w') as fopen:
            fopen.write(
                '    1     H2O from ERA reanalysis and WACCM V6 monthly mean \n'
            )

            for row in segmnt(SHout_18, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #---------------------
        # Write out water file Daily
        #---------------------
        with open(sngDir + 'w-120.' + verW, 'w') as fopen:
            fopen.write(
                '    1     H2O from ERA reanalysis and WACCM V6 monthly mean \n'
            )

            for row in segmnt(SHout, 5):
                strformat = ','.join('{:>12.4E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #------------------------------
        # Write out Temperature, water,
        # and PV every 6 hours
        #------------------------------
        with open(sngDir + 'ERA_Interm_PV.' + YYYY + MM + DD, 'w') as fopen:
            fopen.write(
                'Daily Averaged and 6 hourly PV from ERA Interim [K m^2 kg^-1 s^-1] \n'
            )
            fopen.write(
                '{0:>20s}{1:>20s}{2:>20s}{3:>20s}{4:>20s}{5:>20s}\n'.format(
                    'Height [km]', 'PV[K m^2 kg^-1 s^-1]', 'PV at 00',
                    'PV at 06', 'PV at 12', 'PV at 18'))

            for row in zip(*(Z_day, PV_day, PVint_00, PVint_06, PVint_12,
                             PVint_18)):
                strformat = ','.join('{:>20.7E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        with open(sngDir + 'ERA_Interm_T.' + YYYY + MM + DD, 'w') as fopen:
            fopen.write(
                'Daily averaged and 6 Hourly Temperature from ERA Interim [K] \n'
            )
            fopen.write(
                '{0:>15s}{1:>15s}{2:>15s}{3:>15s}{4:>15s}{5:>15s}\n'.format(
                    'Height [km]', 'T [K]', 'T at 00', 'T at 06', 'T at 12',
                    'T at 18'))

            for row in zip(*(Z_day, T_day, Tint_00, Tint_06, Tint_12,
                             Tint_18)):
                strformat = ','.join('{:>15.7E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        with open(sngDir + 'ERA_Interm_Q.' + YYYY + MM + DD, 'w') as fopen:
            fopen.write(
                'Daily averaged and 6 hourly specific humidity Q from ERA Interim [VMR] \n'
            )
            fopen.write(
                '{0:>15s}{1:>15s}{2:>15s}{3:>15s}{4:>15s}{5:>15s}\n'.format(
                    'Height [km]', 'Q [VMR]', 'Q at 00', 'Q at 06', 'Q at 12',
                    'Q at 18'))

            for row in zip(*(Z_day, Q_day, Qint_00, Qint_06, Qint_12,
                             Qint_18)):
                strformat = ','.join('{:>15.7E}' for i in row) + ', \n'
                fopen.write(strformat.format(*row))

        #--------------------
        # Create plots to pdf
        #--------------------
        pdfsav = PdfPages(sngDir + 'WaterProfile_ERA.pdf')

        fig1, ax1 = plt.subplots()
        ax1.plot(SHout_00, Z, color='green', label='Interpolated SH-00')
        ax1.plot(SHout_06, Z, color='gold', label='Interpolated SH-06')
        ax1.plot(SHout_12, Z, color='cyan', label='Interpolated SH-12')
        ax1.plot(SHout_18, Z, color='gray', label='Interpolated SH-18')

        ax1.plot(SHout, Z, 'rx-', label='Interpolated SH-Mean')
        ax1.plot(Q_day, Z_day, 'kx-', label='ERA Reanalysis SH-Mean')
        ax1.plot(waccmW[:, mnthInd], Z, 'bx-', label='WACCM V6 SH')
        ax1.grid(True, which='both')
        ax1.legend(prop={'size': 9})
        ax1.set_ylabel('Altitude [km]')
        ax1.set_xlabel('VMR [ppv]')
        ax1.tick_params(axis='x', which='both', labelsize=8)
        ax1.set_ylim((Z[-1], 80))
        #ax1.set_xlim((0,np.max((waccmW[-1,mnthInd],Q_day[-1]))))
        ax1.set_title(YYYY + '-' + MM + '-' + DD)

        pdfsav.savefig(fig1, dpi=250)

        fig2, ax2 = plt.subplots()
        ax2.plot(SHout_00, Z, color='green', label='Interpolated SH-00')
        ax2.plot(SHout_06, Z, color='gold', label='Interpolated SH-06')
        ax2.plot(SHout_12, Z, color='cyan', label='Interpolated SH-12')
        ax2.plot(SHout_18, Z, color='gray', label='Interpolated SH-18')

        ax2.plot(SHout, Z, 'rx-', label='Interpolated SH-Mean')
        ax2.plot(Q_day, Z_day, 'kx-', label='ERA Reanalysis SH-Mean')
        ax2.plot(waccmW[:, mnthInd], Z, 'bx-', label='WACCM V6 SH')
        ax2.grid(True, which='both')
        ax2.legend(prop={'size': 9})
        ax2.set_ylabel('Altitude [km]')
        ax2.set_xlabel('log VMR [ppv]')
        ax2.tick_params(axis='x', which='both', labelsize=8)
        ax2.set_xscale('log')
        ax2.set_ylim((Z[-1], 80))
        #ax2.set_xlim((0,np.max((waccmW[-1,mnthInd],Q_day[-1]))))
        ax2.set_title(YYYY + '-' + MM + '-' + DD)

        pdfsav.savefig(fig2, dpi=250)

        pdfsav.close()

        print 'Finished processing folder: {}'.format(sngDir)