Beispiel #1
0
 def compute_IP(self, vertex,jet):
     '''find the impact parameter of the trajectory with respect to a given
     point (vertex). The impact parameter has the same sign as the scalar product of
     the vector pointing from the given vertex to  the point of closest
     approach with the given jet direction.
     
     new attributes :
     *   closest_t = time of closest approach to the primary vertex.
     *   IP = signed impact parameter
     *   IPcoord = TVector3 of the point of closest approach to the
         primary vertex
     '''
     self.vertex_IP = vertex
     def distquad (time):
         x,y,z = self.coord_at_time(time)
         dist2 = (x-vertex.x())**2 + (y-vertex.y())**2\
         + (z-vertex.z())**2 
         return dist2
     minim_answer = opti.bracket(distquad, xa = -0.5e-14, xb = 0.5e-14)
     self.closest_t = minim_answer[1]
     vector_IP = self.point_at_time(minim_answer[1]) - vertex
     Pj = jet.p4().Vect().Unit()
     signIP  = vector_IP.Dot(Pj)
     self.IP = minim_answer[4]**(1.0/2)*sign(signIP)
     
     x,y,z = self.coord_at_time(minim_answer[1])
     self.IPcoord = TVector3(x, y, z)
Beispiel #2
0
    def compute_IP(self, vertex, jet):
        '''find the impact parameter of the trajectory with respect to a given
        point (vertex). The impact parameter has the same sign as the scalar product of
        the vector pointing from the given vertex to  the point of closest
        approach with the given jet direction.
        
        new attributes :
        *   closest_t = time of closest approach to the primary vertex.
        *   IP = signed impact parameter
        *   IPcoord = TVector3 of the point of closest approach to the
            primary vertex
        '''
        self.vertex_IP = vertex

        def distquad(time):
            x, y, z = self.coord_at_time(time)
            dist2 = (x-vertex.x())**2 + (y-vertex.y())**2\
            + (z-vertex.z())**2
            return dist2

        minim_answer = opti.bracket(distquad, xa=-0.5e-14, xb=0.5e-14)
        self.closest_t = minim_answer[1]
        vector_IP = self.point_at_time(minim_answer[1]) - vertex
        Pj = jet.p4().Vect().Unit()
        signIP = vector_IP.Dot(Pj)
        self.IP = minim_answer[4]**(1.0 / 2) * sign(signIP)

        x, y, z = self.coord_at_time(minim_answer[1])
        self.IPcoord = TVector3(x, y, z)
Beispiel #3
0
def max_epsilon_ratio(q):
    def foo(eps):
        err = expected_error(q, eps, pf_pmf)
        eps2 = expected_epsilon(q, err, [eps, 2*eps])
        return -eps2/eps
    br = bracket(foo, 1e-3, 1.0)[0:3]
    ans = minimize_scalar(foo, bracket=br, method='brent')
    eps0 = ans.x
    err = expected_error(q, eps0, pf_pmf)
    eps1 = expected_epsilon(q, err, [eps0, 2*eps0])
    return eps0, err, eps1
Beispiel #4
0
 def __call__(self, *args, **kwargs):
     f_line = lambda x: kwargs['f'](kwargs['x_k'] + x * kwargs['p_k'])
     oracle_calls = 0
     if self.bracketing:
         l, r = 0, 100
         xa, xb, xc, fa, fb, fc, calls = bracket(f_line, xa=l, xb=r)
         oracle_calls += calls
         brack = (xa, xb, xc)
     else:
         brack = (0, 100)
     alpha, _, _, calls = brent_sc(f_line, brack=brack, tol=kwargs['tol'], full_output=True)
     return alpha, calls + oracle_calls
Beispiel #5
0
 def __call__(self, *args, **kwargs):
     f_line = lambda x: kwargs['f'](kwargs['x_k'] + x * kwargs['p_k'])
     oracle_calls = 0
     if self.bracketing:
         l, r = 0, 100
         xa, xb, xc, fa, fb, fc, calls = bracket(f_line, xa=l, xb=r)
         oracle_calls += calls
         l, r = xa, xc
     else:
         l, r = 0, 100
     alpha, calls = self.golden_section(f_line, l, r, self.tol, self.max_iter)
     return alpha, calls + oracle_calls
Beispiel #6
0
 def compute_IP(self, vertex):
     self.vertex=vertex
     def distquad (time):
         x,y,z = self.coord_at_time(time)
         dist2 = (x-vertex.x())**2 + (y-vertex.y())**2\
         + (z-vertex.z())**2 
         return dist2
     minim_answer = opti.bracket(distquad, xa = -0.5e-14, xb = 0.5e-14)
     self.closest_t = minim_answer[1]
     vector_IP = self.point_at_time(minim_answer[1]) - vertex
     self.signIP= vector_IP.Dot(self.p4.Vect().Unit())
     self.IP = minim_answer[4]**(1.0/2)*sign(self.signIP)
Beispiel #7
0
def powell(F, x, h=0.1, tol=1.0e-0):

    def f(s): return F(x + s*v) # F in direction of v

    n = len(x)                # Humber of design variables
    df = np.zeros(n)          # Decreases of F stored here
    u = np.identity(n)        # Vectors v stored here by rows
    for j in range(30):       # Allow for 30 cycles:
       xOld = x.copy()        # Save starting point
       fOld = F(xOld)
     # First n live searches record decreases of F
        for i in range(n):
            v = u[i]
            a, b = bracket(f, 0.0, h)
            s, fMin = search(f,a,b)
          df[1] = fOld -tUft
          fOld =
          x = x + a*v
Beispiel #8
0
    def line_search(self):
        r"""Perform a line search along the descent direction to get a new
        value of the parameter"""
        u, p, q = self.state, self.parameter, self.search_direction
        u_t, p_t = u.copy(deepcopy=True), p.copy(deepcopy=True)

        def f(t):
            p_t.assign(p + firedrake.Constant(t) * q)
            u_t.assign(self._forward_solve(p_t))
            return self._assemble(replace(self._J, {u: u_t, p: p_t}))

        try:
            line_search_options = self._line_search_options
        except AttributeError:
            line_search_options = {}

        brack = bracket(f, xa=0.0, xb=_bracket(f, max_iterations=30))[:3]
        result = minimize_scalar(f, bracket=brack, options=line_search_options)

        if not result.success:
            raise ValueError("Line search failed: {}".format(result.message))

        return result.x
Beispiel #9
0
def getmin(fun,xa,xb):
    res1 = bracket(fun, xa = xa, xb=xb)
    res = minimize_scalar(fun,  bounds=(res1[2],res1[1]),  method='bounded')
    return res.x
Beispiel #10
0
from scipy.optimize import minimize, bracket, minimize_scalar


def f(x):
    return (x - 1) * (x + 5) * (x - 3) * (x + 10)


# res = minimize_scalar(f,  bounds=(-3, 60000000000),  method='bounded')

#局域最低点

res1 = bracket(f, xa=5, xb=4)
print(res1)
res = minimize_scalar(f, bounds=(res1[2], res1[1]), method='bounded')
print(res.x)
Beispiel #11
0
def grad(foo, var_list, init_values, tol=1e-5, max_iter=10000):
    """
    This method computes the minimum value of a multivariable
    algebraic function using the Gradient Descent algorithm,
    provided that a initial point is given.

    Parameters:
    foo: callable multivariable algebraic function built with sympy;
    var_list: list containing independent variables of the function;
    init_values: list containing the initial values of the variables
                 provided in "var_list"
    tol: tolerance of the method;
    max_iter: maximum number of iteration allowed;
    """

    # Initial definitions and variables declaration
    alpha = symbols("alpha")
    n = 0
    current_values = asarray(init_values)
    previous_values = None
    previous_replacements = None
    gradient_vector = list()
    gradient_values = list()

    # Generate gradient vector analytically
    for var in var_list:
        gradient_vector.append(diff(foo, var))

    # Perform Gradient Descent Algorithm
    while n < max_iter:

        replacements = [(var, var_value)
                        for var, var_value in zip(var_list, current_values)]

        # Check if this is the first iteration, if not, check for stop criteria
        if n != 0:
            if linalg.norm(current_values - previous_values) < tol and \
               abs(foo.subs(replacements) -
               foo.subs(previous_replacements)) < tol and \
               linalg.norm(gradient_values) < tol:
                return current_values, foo.subs(replacements), n

        gradient_values = list()

        for index, _ in enumerate(gradient_vector):
            gradient_values.append(
                float(gradient_vector[index].subs(replacements)))

        gradient_values = asarray(gradient_values)

        alpha_foo_arg = current_values - alpha * gradient_values

        alpha_replacements = [
            (var, var_value) for var, var_value in zip(var_list, alpha_foo_arg)
        ]

        alpha_foo = foo.subs(alpha_replacements)

        alpha_foo = lambdify(alpha, alpha_foo)

        # Perform bracketing for determining the boundaries for line sarch
        xa, _, xc, _, _, _, _ = optimize.bracket(alpha_foo)

        # Perform line search for minimizing "alpha"
        # using the Golden Section Method
        min_alpha, _, _ = golden_ratio(alpha_foo, "min", xa, xc)

        # Save variable value of current iteration
        previous_values = current_values

        # Calculate variable values for next iteration
        current_values = previous_values - min_alpha * gradient_values

        previous_replacements = replacements

        n += 1

    else:
        raise RuntimeError("The number of iterations reached "
                           "the defined maximum number of iterations.")
Beispiel #12
0
 def find_min_h_brent(self, Bs, dtau_init, tol=5E-2, skipIfLower=False, 
                      verbose=False, use_tangvec_overlap=False,
                      max_iter=20):
     As0 = cp.deepcopy(self.A)
     Cs0 = cp.deepcopy(self.C)
     Ks0 = cp.deepcopy(self.K)
     h_expect_0 = self.H_expect
     
     ls0 = cp.deepcopy(self.l)
     rs0 = cp.deepcopy(self.r)
     
     taus=[0]
     if use_tangvec_overlap:
         ress = [self.eta_sq.real.sum()]
     else:
         ress = [h_expect_0.real]
     hs = [h_expect_0.real]
     
     def f(tau, *args):
         if tau < 0:
             if use_tangvec_overlap:
                 res = tau**2 + self.eta_sq.sum().real
             else:
                 res = tau**2 + h_expect_0.real
             log.debug((tau, res, "punishing negative tau!"))
             taus.append(tau)
             ress.append(res)
             hs.append(h_expect_0.real)
             return res
         try:
             i = taus.index(tau)
             log.debug((tau, ress[i], "from stored"))
             return ress[i]
         except ValueError:
             for n in xrange(1, self.N + 1):
                 if not Bs[n] is None:
                     self.A[n] = As0[n] - tau * Bs[n]
                 
             if use_tangvec_overlap:
                 self.update(restore_CF=False)
                 Bsg = self.calc_B(set_eta=False)
                 res = 0
                 for n in xrange(1, self.N + 1):
                     if not Bs[n] is None:
                         res += abs(m.adot(self.l[n - 1], tm.eps_r_noop(self.r[n], Bsg[n], Bs[n])))
                 h_exp = self.H_expect.real
             else:
                 self.calc_l()
                 self.calc_r()
                 self.simple_renorm()
                 self.calc_C()
                 
                 h_exp = 0
                 if self.ham_sites == 2:
                     for n in xrange(1, self.N):
                         h_exp += self.expect_2s(self.ham[n], n).real
                 else:
                     for n in xrange(1, self.N - 1):
                         h_exp += self.expect_3s(self.ham[n], n).real
                 res = h_exp
             
             log.debug((tau, res, h_exp, h_exp - h_expect_0.real))
             
             taus.append(tau)
             ress.append(res)
             hs.append(h_exp)
             
             return res
     
     if skipIfLower:
         if f(dtau_init) < self.H_expect.real:
             return dtau_init
     
     brack_init = (dtau_init * 0.9, dtau_init * 1.5)
     
     attempt = 1
     while attempt < 3:
         try:
             log.debug("CG: Bracketing...")
             xa, xb, xc, fa, fb, fc, funcalls = opti.bracket(f, xa=brack_init[0], 
                                                             xb=brack_init[1], 
                                                             maxiter=5)                                                
             brack = (xa, xb, xc)
             log.debug("CG: Using bracket = " + str(brack))
             break
         except RuntimeError:
             log.debug("CG: Bracketing failed, attempt %u." % attempt)
             brack_init = (brack_init[0] * 0.1, brack_init[1] * 0.1)
             attempt += 1
     
     if attempt == 3:
         log.debug("CG: Bracketing failed. Aborting!")
         tau_opt = 0
         h_min = h_expect_0.real
     else:
         try:
             tau_opt, res_min, itr, calls = opti.brent(f, 
                                                     brack=brack, 
                                                     tol=tol,
                                                     maxiter=max_iter,
                                                     full_output=True)
 
             i = taus.index(tau_opt)
             h_min = hs[i]
         except ValueError:
             log.debug("CG: Bad bracket. Aborting!")
             tau_opt = 0
             h_min = h_expect_0.real
         
     #Must restore everything needed for take_step
     self.A = As0
     self.l = ls0
     self.r = rs0
     self.C = Cs0
     self.K = Ks0
     self.H_expect = h_expect_0
     
     return tau_opt, h_min
Beispiel #13
0
sensnorm = 0
removed = remove(seed, num_remove, mi[:num_exclude])
for ind in removed:
    if (outflag == 1):
        print(ind, reactions[ind].equation, ms[ind])
    sensnorm += ms[ind]

if (gas.reaction_type(measure_ind) == 4):
    k0 = gas.reactions()[measure_ind].low_rate.pre_exponential_factor
else:
    k0 = gas.reactions()[measure_ind].rate.pre_exponential_factor
try:
    xa, xb, xc, fa, fb, fc, nf = op.bracket(
        residual,
        xa=np.log10(0.5),
        xb=np.log10(2.0),
        args=(k0, observations, measure_ind, tmaxes, temperatures, pressures,
              initials, maxes, yields),
        grow_limit=1.5)
    brack = (xa, xb, xc)
    if (outflag == 1):
        print("bracket found in %d calls: (%f %f %f)" % (nf, xa, xb, xc))
    result = op.minimize_scalar(residual,
                                args=(k0, observations, measure_ind, tmaxes,
                                      temperatures, pressures, initials, maxes,
                                      yields),
                                method='brent',
                                bracket=brack,
                                options={'xtol': ktol})
except Exception as error:
    print('failed')
Beispiel #14
0
    def f(s): return F(x + s*v) # F in direction of v

    n = len(x)                # Humber of design variables
    df = np.zeros(n)          # Decreases of F stored here
    u = np.identity(n)        # Vectors v stored here by rows
    for j in range(30):       # Allow for 30 cycles:
       xOld = x.copy()        # Save starting point
       fOld = F(xOld)
     # First n live searches record decreases of F
        for i in range(n):
            v = u[i]
            a, b = bracket(f, 0.0, h)
            s, fMin = search(f,a,b)
          df[1] = fOld -tUft
          fOld =
          x = x + a*v
       Last 1.e sear. . the cycle

       a,b = bracket(f.O.O.h)
       s,frast = search(f,a,b)

       Check for convergence
       If Math. grt(r.p.dot(x-xOld.x-x01d)/n) < tol: recur])
       /dentify biggest decrease update seamen directions
          = np.argmax(df)
       for i   range(1Max.n-1):
          u[i] -1(1+1]
       III 1] = v
    print( "Powell did not converge)
Beispiel #15
0
def minimize_linesearch(objF,x0,step):
    #line search causes many additional objF calls, but runs without new hessians and prevents pingponging with hessians@grads overshhots
    #golden
    
    #%% find abc bounds for alpha
    a=0
    b=1

    
    #fa=objF(a*step+x0)
    #fb=objF(b*step+x0)
    
    
    #if fb<fa: #a ok, falta acertar c
        #c=2
        #fc=objF(c*step+x0)

        #i=0
        #imax=10
        #while i<imax and not fc>fb: 
            #c=c*2 #towards inf
            #fc=objF(c*step+x0)        
            #i+=1
        
    #else: #c ok, falta acertar b
        #c=b*1
        #fc=fb*1
        
        #i=0
        #imax=10
        #while i<imax and not fb<fa:
            #b=b/2 #towards zero
            #fb=objF(b*step+x0)
            #i+=1
    
    #alpha = gss(f=lambda alpha:objF(alpha*step+x0),
                #a=b,
                #b=c)
    
    #print(alpha)
    #print(objF(alpha*step+x0))
    #input('alpha')
    #return alpha
    
    from scipy import optimize as opt
    #alpha = gss(f=lambda alpha:objF(x0 + alpha*step),
                #a=a, 
                #b=c)
    #assert(fa<fb<fc)
    
    a,b,c,fa,fb,fc,_=opt.bracket(func=lambda alpha:objF(x0 + alpha*step),xa=a,xb=b)
    
    abc=np.array([a,b,c])
    fabc=np.array([fa,fb,fc])
    idx = np.argsort(abc)
    a,b,c=abc[idx]
    fa,fb,fc=fabc[idx]
    
    #print(a,b,c,fa,fb,fc)
    #input('paused')
    alpha=opt.golden(func=lambda alpha:objF(x0 + alpha*step), brack=(a, b, c))
    
    #print(alpha)
    #print(objF(alpha*step+x0))
    #input('alpha')
    return alpha