Beispiel #1
0
def connectivity_to_weights(mknn: sparse.csr.csr_matrix,
                            axis: int = 1) -> sparse.lil_matrix:
    """Convert a binary connectivity matrix to weights ready to be multiplied to smooth a data matrix
    """
    if type(mknn) is not sparse.csr.csr_matrix:
        mknn = mknn.tocsr()
    return mknn.multiply(1. / sparse.csr_matrix.sum(mknn, axis=axis))
Beispiel #2
0
def sp_coo2torch_coo(M: sp.csr.csr_matrix) -> torch.sparse:
    """

    :param M:
    :return:
    """
    if isinstance(M, sp.csr_matrix):
        M = M.tocoo()

    M = torch.sparse.FloatTensor(torch.LongTensor(np.vstack((M.row, M.col))),
                                 torch.FloatTensor(M.data),
                                 torch.Size(M.shape))

    return M
Beispiel #3
0
def calculate_field(od_mat: sp.csr.csr_matrix,
                    grid_width: int,
                    nb_trajecs: int = None) -> Tuple[np.array, np.array]:
    """Calculate the field at each location (origin) where it is non-zero.

    Parameters
    ----------
    od_mat : csr_matrix
        The orgin-destination (OD) matrix to use as input.
    grid_width : int
        The width of the grid in the level.
    nb_trajecs : int or None, optional
        If provided, normalise the field by dividing by this number.

    Returns
    -------
    Xs : np.array
        The coordinates of the non-zero entries of the field.
    Fs : np.array
        The entries of the field.

    """
    i, j = od_mat.nonzero()
    r_origin = np.vstack((i % grid_width, i // grid_width)).T
    r_destination = np.vstack((j % grid_width, j // grid_width)).T

    u_vec = r_destination - r_origin
    u_vec = u_vec / np.linalg.norm(u_vec, axis=1)[:, np.newaxis]

    weighted_vec = u_vec * np.asarray(od_mat[i, j]).T

    # We sum the vectors grouped by origin using counts of unique elements
    _, idx_uniq, counts = np.unique(i, return_index=True, return_counts=True)
    c = np.cumsum(counts)  # the end index of each group

    nb_locations = len(idx_uniq)
    Xs = r_origin[idx_uniq]  # The position at which the field is non-zero

    Fs = np.zeros((nb_locations, 2))  # Pre-allocate memory for the field

    start = 0
    for k, end in enumerate(c):
        Fs[k] += weighted_vec[start:end].sum(axis=0)
        start = end

    if nb_trajecs:
        Fs /= nb_trajecs

    return Xs, Fs
Beispiel #4
0
def reduce_matrix(square_mat: sp.csr.csr_matrix,
                  return_index: bool = False) -> sp.csr.csr_matrix:
    """Remove all rows and columns that are simultaneously empty.

    Parameters
    ----------
    square_mat : csr_matrix
        Input matrix.
    return_index : bool
        If True, also return the indices of `square_mat` that were kept.

    Returns
    -------
    reduced_mat : sp.csr_matrix
        A square matrix that has the zero rows and columns removed.
    idx : np.array, optional
        The index of the rows and columns that were kept

    """
    i, j = square_mat.nonzero()
    idx = sorted(set(i).union(set(j)))  # sorted converts to list
    reduced_mat = square_mat[idx, :][:, idx]

    return (reduced_mat, idx) if return_index else reduced_mat
Beispiel #5
0
def make_mutual(knn: sparse.csr.csr_matrix) -> sparse.coo_matrix:
    """Removes edges between neighbours that are not mutual
    """
    return knn.minimum(knn.T)