def __init__(self,
                 num_target_qubits: int,
                 mu: float = 0,
                 sigma: float = 1,
                 low: float = 0,
                 high: float = 1) -> None:
        r"""
        Univariate lognormal distribution

        Args:
            num_target_qubits: number of qubits it acts on,
                has a min. value of 1.
            mu: expected value of considered normal distribution
            sigma: standard deviation of considered normal distribution
            low: lower bound, i.e., the value corresponding to \|0...0>
                         (assuming an equidistant grid)
            high: upper bound, i.e., the value corresponding to \|1...1>
                          (assuming an equidistant grid)
        """
        validate_min('num_target_qubits', num_target_qubits, 1)
        probabilities, _ = UnivariateDistribution.\
            pdf_to_probabilities(
                lambda x: lognorm.pdf(x, s=sigma, scale=np.exp(mu)),
                low, high, 2 ** num_target_qubits)
        super().__init__(num_target_qubits, probabilities, low, high)
Beispiel #2
0
    def __init__(self, num_target_qubits, mu=0, sigma=1, low=0, high=1):
        """
        Constructor.

        Univariate lognormal distribution
        Args:
            num_target_qubits (int): number of qubits it acts on
            mu (float): expected value of considered normal distribution
            sigma (float): standard deviation of considered normal distribution
            low (float): lower bound, i.e., the value corresponding to |0...0> (assuming an equidistant grid)
            high (float): upper bound, i.e., the value corresponding to |1...1> (assuming an equidistant grid)
        """
        self.validate(locals())
        probabilities, _ = UnivariateDistribution.\
        pdf_to_probabilities(lambda x: lognorm.pdf(x, s=sigma, scale=np.exp(mu)), low, high, 2 ** num_target_qubits)
        super().__init__(num_target_qubits, probabilities, low, high)
Beispiel #3
0
def lognorm_pdf(mean, sd):
    """Define a log-normal PDF from its mean and standard deviation"""
    sigma = np.sqrt(np.log(1 + sd**2 / mean**2))
    mu = np.log(mean) - (sigma**2 / 2)
    return lambda x: lognorm.pdf(x, s=sigma, scale=np.exp(mu))
Beispiel #4
0
 def __init__(self, num_target_qubits, mu=0, sigma=1, low=0, high=1):
     self.validate(locals())
     probabilities, _ = UnivariateDistribution.\
     pdf_to_probabilities(lambda x: lognorm.pdf(x, s=sigma, scale=np.exp(mu)), low, high, 2 ** num_target_qubits)
     super().__init__(num_target_qubits, probabilities, low, high)