Beispiel #1
0
def uncertainty_gs(probs, likelyhoods, credal_size):
	sorted_index = np.argsort(likelyhoods, kind='stable')
	l = likelyhoods[sorted_index]
	p = probs[:,sorted_index]

	gs_total = []
	gs_epist = []
	gs_ale   = []
	for level in range(credal_size-1):
		p_cut = p[:,0:level+2] # get the level cut probs based on sorted likelyhood
		# computing levi (set14) for level cut p_cut and appeinding to the unc array
		entropy = -p_cut*np.ma.log2(p_cut)
		entropy = entropy.filled(0)
		entropy_sum = np.sum(entropy, axis=2)
		s_max = np.max(entropy_sum, axis=1)
		s_min = np.min(entropy_sum, axis=1)
		gh    = set_gh(p_cut)
		total = s_max
		e = gh
		a = total - e
		gs_total.append(total)
		gs_epist.append(e)
		gs_ale.append(a)

	gs_total = np.mean(np.array(gs_total), axis=0)	
	gs_epist = np.mean(np.array(gs_epist), axis=0)	
	gs_ale   = np.mean(np.array(gs_ale), axis=0)	

	return gs_total, gs_epist, gs_ale
Beispiel #2
0
def uncertainty_ent_bays(probs, likelihoods): # three dimentianl array with d1 as datapoints, (d2) the rows as samples and (d3) the columns as probability for each class
	p = np.array(probs)
	# print("prob\n", probs)
	# print("likelihoods in bays", likelihoods)
	entropy = -p*np.ma.log2(p)
	entropy = entropy.filled(0)
	# print("entropy\n", entropy)

	a = np.sum(entropy, axis=2)
	al = a * likelihoods
	a = np.sum(al, axis=1)

	given_axis = 1
	dim_array = np.ones((1,probs.ndim),int).ravel()
	dim_array[given_axis] = -1
	b_reshaped = likelihoods.reshape(dim_array)
	mult_out = probs*b_reshaped
	p_m = np.sum(mult_out, axis=1)

	# p_m = np.mean(p, axis=1) #* likelihoods

	total = -np.sum(p_m*np.ma.log2(p_m), axis=1)
	total = total.filled(0)
	e = total - a
	return total, e, a
Beispiel #3
0
def uncertainty_set15(probs, bootstrap_size=0, sampling_size=0, credal_size=0):
	if bootstrap_size > 0:
		p = [] #np.array(probs)
		for data_point in probs:
			d_p = []
			for sampling_seed in range(bootstrap_size):
				d_p.append(resample(data_point, random_state=sampling_seed))
			p.append(np.array(d_p))
		p = np.array(p)
		p = np.mean(p, axis=2)
	if sampling_size > 0:
		p = [] 
		for sample_index in range(sampling_size):
			# number_of_samples = int(probs.shape[1] / sampling_size)
			# print("number_of_samples ", number_of_samples)
			sampled_index = np.random.choice(probs.shape[1], credal_size)
			p.append(probs[:,sampled_index,:])
		p = np.array(p)
		p = np.mean(p, axis=2)
		p = p.transpose([1,0,2])
	else:
		p = probs

	entropy = -p*np.ma.log2(p)
	entropy = entropy.filled(0)
	entropy_sum = np.sum(entropy, axis=2)
	s_min = np.min(entropy_sum, axis=1)
	s_max = np.max(entropy_sum, axis=1)
	total = s_max
	e = s_max - s_min
	a = total - e
	return total, e, a 
Beispiel #4
0
def uncertainty_ent(probs): # three dimentianl array with d1 as datapoints, (d2) the rows as samples and (d3) the columns as probability for each class
	p = np.array(probs)
	entropy = -p*np.ma.log2(p)
	entropy = entropy.filled(0)
	a = np.sum(entropy, axis=1)
	a = np.sum(a, axis=1) / entropy.shape[1]
	p_m = np.mean(p, axis=1)
	total = -np.sum(p_m*np.ma.log2(p_m), axis=1)
	total = total.filled(0)
	e = total - a
	return total, e, a # now it should be correct
Beispiel #5
0
def uncertainty_ent_levi(probs, credal_size=30): # three dimentianl array with d1 as datapoints, (d2) the rows as samples and (d3) the columns as probability for each class
	p = [] #np.array(probs)
	for data_point in probs:
		d_p = []
		for sampling_seed in range(credal_size):
			d_p.append(resample(data_point, random_state=sampling_seed))
		p.append(np.array(d_p))
	p = np.array(p)
	p = np.mean(p, axis=2)
	entropy = -p*np.ma.log10(p)
	entropy = entropy.filled(0)
	a = np.sum(entropy, axis=1)
	a = np.sum(a, axis=1) / entropy.shape[1]
	p_m = np.mean(p, axis=1)
	total = -np.sum(p_m*np.ma.log10(p_m), axis=1)
	total = total.filled(0)
	e = total - a
	return total, e, a # now it should be correct
Beispiel #6
0
def uncertainty_set17(probs, bootstrap_size=0, sampling_size=0, credal_size=0, log=False):
	if bootstrap_size > 0:
		p = [] #np.array(probs)
		for data_point in probs:
			d_p = []
			for sampling_seed in range(bootstrap_size):
				d_p.append(resample(data_point, random_state=sampling_seed))
			p.append(np.array(d_p))
		p = np.array(p)
		p = np.mean(p, axis=2)
	if sampling_size > 0:
		p = [] 
		for sample_index in range(sampling_size):
			# number_of_samples = int(probs.shape[1] / sampling_size)
			sampled_index = np.random.choice(probs.shape[1], credal_size)
			p.append(probs[:,sampled_index,:])
		p = np.array(p)
		p = np.mean(p, axis=2)
		p = p.transpose([1,0,2])
	else:
		p = probs
		
	if log:
		print("------------------------------------set14 prob after averaging each ensemble")
		print("Set14 p \n" , p)
		print(p.shape)
	# entropy = -p*np.log2(p)
	entropy = -p*np.ma.log2(p)
	entropy = entropy.filled(0)
	p_m = np.mean(p, axis=1)
	total = -np.sum(p_m*np.ma.log2(p_m), axis=1)
	total = total.filled(0)
	entropy_sum = np.sum(entropy, axis=2)
	s_max = np.max(entropy_sum, axis=1)

	gh    = set_gh(p)
	e = gh
	a = s_max
	total = a + e

	return total, e, a 
Beispiel #7
0
def uncertainty_ent_standard(probs): # for tree
	p = np.array(probs)
	entropy = -p*np.ma.log10(p)
	entropy = entropy.filled(0)
	total = np.sum(entropy, axis=1)
	return total, total, total # now it should be correct