def df(x,df1,df2,ncp=0):
    """
    Calculates the density/point estimate of the F-distribution
    """
    from scipy.stats import f,ncf
    if ncp==0:
        result=f.pdf(x=x,dfn=df1,dfd=df2,loc=0,scale=1)
    else:
        result=ncf.pdf(x=x,dfn=df1,dfd=df2,nc=ncp,loc=0,scale=1)
    return result
Beispiel #2
0
from scipy.stats import ncf
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)

# Calculate a few first moments:

dfn, dfd, nc = 27, 27, 0.416
mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc), ncf.ppf(0.99, dfn, dfd, nc), 100)
ax.plot(x, ncf.pdf(x, dfn, dfd, nc), 'r-', lw=5, alpha=0.6, label='ncf pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = ncf(dfn, dfd, nc)
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc)
np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc))
# True

# Generate random numbers: