def __init__(self, lower, upper):
        if lower is None:
            self.lower = 0.0
        else:
            self.lower = lower
        if upper is None:
            self.upper = 1.0
        else:
            self.upper = upper

        if self.lower > self.upper:
            raise ValueError(
                'Invalid Beta distribution parameters. Lower should be smaller than upper.'
            )

        self.bounds = np.array([self.lower, self.upper])
        self.x_range_for_pdf = np.linspace(self.lower, self.upper,
                                           RECURRENCE_PDF_SAMPLES)
        loc = self.lower
        scale = self.upper - self.lower

        self.parent = arcsine(loc=loc, scale=scale)
        self.mean, self.variance, self.skewness, self.kurtosis = self.parent.stats(
            moments='mvsk')
        self.shape_parameter_A = -0.5
        self.shape_parameter_B = -0.5
Beispiel #2
0
mean, var, skew, kurt = arcsine.stats(moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(arcsine.ppf(0.01),
                arcsine.ppf(0.99), 100)
ax.plot(x, arcsine.pdf(x),
       'r-', lw=5, alpha=0.6, label='arcsine pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = arcsine()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = arcsine.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], arcsine.cdf(vals))
# True

# Generate random numbers:

r = arcsine.rvs(size=1000)

# And compare the histogram:

ax.hist(r, density=True, histtype='stepfilled', alpha=0.2)
Beispiel #3
0
def all_dists():
    # dists param were taken from scipy.stats official
    # documentaion examples
    # Total - 89
    return {
        "alpha":
        stats.alpha(a=3.57, loc=0.0, scale=1.0),
        "anglit":
        stats.anglit(loc=0.0, scale=1.0),
        "arcsine":
        stats.arcsine(loc=0.0, scale=1.0),
        "beta":
        stats.beta(a=2.31, b=0.627, loc=0.0, scale=1.0),
        "betaprime":
        stats.betaprime(a=5, b=6, loc=0.0, scale=1.0),
        "bradford":
        stats.bradford(c=0.299, loc=0.0, scale=1.0),
        "burr":
        stats.burr(c=10.5, d=4.3, loc=0.0, scale=1.0),
        "cauchy":
        stats.cauchy(loc=0.0, scale=1.0),
        "chi":
        stats.chi(df=78, loc=0.0, scale=1.0),
        "chi2":
        stats.chi2(df=55, loc=0.0, scale=1.0),
        "cosine":
        stats.cosine(loc=0.0, scale=1.0),
        "dgamma":
        stats.dgamma(a=1.1, loc=0.0, scale=1.0),
        "dweibull":
        stats.dweibull(c=2.07, loc=0.0, scale=1.0),
        "erlang":
        stats.erlang(a=2, loc=0.0, scale=1.0),
        "expon":
        stats.expon(loc=0.0, scale=1.0),
        "exponnorm":
        stats.exponnorm(K=1.5, loc=0.0, scale=1.0),
        "exponweib":
        stats.exponweib(a=2.89, c=1.95, loc=0.0, scale=1.0),
        "exponpow":
        stats.exponpow(b=2.7, loc=0.0, scale=1.0),
        "f":
        stats.f(dfn=29, dfd=18, loc=0.0, scale=1.0),
        "fatiguelife":
        stats.fatiguelife(c=29, loc=0.0, scale=1.0),
        "fisk":
        stats.fisk(c=3.09, loc=0.0, scale=1.0),
        "foldcauchy":
        stats.foldcauchy(c=4.72, loc=0.0, scale=1.0),
        "foldnorm":
        stats.foldnorm(c=1.95, loc=0.0, scale=1.0),
        # "frechet_r": stats.frechet_r(c=1.89, loc=0.0, scale=1.0),
        # "frechet_l": stats.frechet_l(c=3.63, loc=0.0, scale=1.0),
        "genlogistic":
        stats.genlogistic(c=0.412, loc=0.0, scale=1.0),
        "genpareto":
        stats.genpareto(c=0.1, loc=0.0, scale=1.0),
        "gennorm":
        stats.gennorm(beta=1.3, loc=0.0, scale=1.0),
        "genexpon":
        stats.genexpon(a=9.13, b=16.2, c=3.28, loc=0.0, scale=1.0),
        "genextreme":
        stats.genextreme(c=-0.1, loc=0.0, scale=1.0),
        "gausshyper":
        stats.gausshyper(a=13.8, b=3.12, c=2.51, z=5.18, loc=0.0, scale=1.0),
        "gamma":
        stats.gamma(a=1.99, loc=0.0, scale=1.0),
        "gengamma":
        stats.gengamma(a=4.42, c=-3.12, loc=0.0, scale=1.0),
        "genhalflogistic":
        stats.genhalflogistic(c=0.773, loc=0.0, scale=1.0),
        "gilbrat":
        stats.gilbrat(loc=0.0, scale=1.0),
        "gompertz":
        stats.gompertz(c=0.947, loc=0.0, scale=1.0),
        "gumbel_r":
        stats.gumbel_r(loc=0.0, scale=1.0),
        "gumbel_l":
        stats.gumbel_l(loc=0.0, scale=1.0),
        "halfcauchy":
        stats.halfcauchy(loc=0.0, scale=1.0),
        "halflogistic":
        stats.halflogistic(loc=0.0, scale=1.0),
        "halfnorm":
        stats.halfnorm(loc=0.0, scale=1.0),
        "halfgennorm":
        stats.halfgennorm(beta=0.675, loc=0.0, scale=1.0),
        "hypsecant":
        stats.hypsecant(loc=0.0, scale=1.0),
        "invgamma":
        stats.invgamma(a=4.07, loc=0.0, scale=1.0),
        "invgauss":
        stats.invgauss(mu=0.145, loc=0.0, scale=1.0),
        "invweibull":
        stats.invweibull(c=10.6, loc=0.0, scale=1.0),
        "johnsonsb":
        stats.johnsonsb(a=4.32, b=3.18, loc=0.0, scale=1.0),
        "johnsonsu":
        stats.johnsonsu(a=2.55, b=2.25, loc=0.0, scale=1.0),
        "ksone":
        stats.ksone(n=1e03, loc=0.0, scale=1.0),
        "kstwobign":
        stats.kstwobign(loc=0.0, scale=1.0),
        "laplace":
        stats.laplace(loc=0.0, scale=1.0),
        "levy":
        stats.levy(loc=0.0, scale=1.0),
        "levy_l":
        stats.levy_l(loc=0.0, scale=1.0),
        "levy_stable":
        stats.levy_stable(alpha=0.357, beta=-0.675, loc=0.0, scale=1.0),
        "logistic":
        stats.logistic(loc=0.0, scale=1.0),
        "loggamma":
        stats.loggamma(c=0.414, loc=0.0, scale=1.0),
        "loglaplace":
        stats.loglaplace(c=3.25, loc=0.0, scale=1.0),
        "lognorm":
        stats.lognorm(s=0.954, loc=0.0, scale=1.0),
        "lomax":
        stats.lomax(c=1.88, loc=0.0, scale=1.0),
        "maxwell":
        stats.maxwell(loc=0.0, scale=1.0),
        "mielke":
        stats.mielke(k=10.4, s=3.6, loc=0.0, scale=1.0),
        "nakagami":
        stats.nakagami(nu=4.97, loc=0.0, scale=1.0),
        "ncx2":
        stats.ncx2(df=21, nc=1.06, loc=0.0, scale=1.0),
        "ncf":
        stats.ncf(dfn=27, dfd=27, nc=0.416, loc=0.0, scale=1.0),
        "nct":
        stats.nct(df=14, nc=0.24, loc=0.0, scale=1.0),
        "norm":
        stats.norm(loc=0.0, scale=1.0),
        "pareto":
        stats.pareto(b=2.62, loc=0.0, scale=1.0),
        "pearson3":
        stats.pearson3(skew=0.1, loc=0.0, scale=1.0),
        "powerlaw":
        stats.powerlaw(a=1.66, loc=0.0, scale=1.0),
        "powerlognorm":
        stats.powerlognorm(c=2.14, s=0.446, loc=0.0, scale=1.0),
        "powernorm":
        stats.powernorm(c=4.45, loc=0.0, scale=1.0),
        "rdist":
        stats.rdist(c=0.9, loc=0.0, scale=1.0),
        "reciprocal":
        stats.reciprocal(a=0.00623, b=1.01, loc=0.0, scale=1.0),
        "rayleigh":
        stats.rayleigh(loc=0.0, scale=1.0),
        "rice":
        stats.rice(b=0.775, loc=0.0, scale=1.0),
        "recipinvgauss":
        stats.recipinvgauss(mu=0.63, loc=0.0, scale=1.0),
        "semicircular":
        stats.semicircular(loc=0.0, scale=1.0),
        "t":
        stats.t(df=2.74, loc=0.0, scale=1.0),
        "triang":
        stats.triang(c=0.158, loc=0.0, scale=1.0),
        "truncexpon":
        stats.truncexpon(b=4.69, loc=0.0, scale=1.0),
        "truncnorm":
        stats.truncnorm(a=0.1, b=2, loc=0.0, scale=1.0),
        "tukeylambda":
        stats.tukeylambda(lam=3.13, loc=0.0, scale=1.0),
        "uniform":
        stats.uniform(loc=0.0, scale=1.0),
        "vonmises":
        stats.vonmises(kappa=3.99, loc=0.0, scale=1.0),
        "vonmises_line":
        stats.vonmises_line(kappa=3.99, loc=0.0, scale=1.0),
        "wald":
        stats.wald(loc=0.0, scale=1.0),
        "weibull_min":
        stats.weibull_min(c=1.79, loc=0.0, scale=1.0),
        "weibull_max":
        stats.weibull_max(c=2.87, loc=0.0, scale=1.0),
        "wrapcauchy":
        stats.wrapcauchy(c=0.0311, loc=0.0, scale=1.0),
    }
Beispiel #4
0
axis.set_xlim([0.0, 3.0])
axis.set_ylim([0.0, 2.0])
axis.yaxis.set_ticks([0.0, 0.5, 1.0, 1.5, 2.0])
axis.set_title(f"Weibull Distribution: λ=1.0")
for i in range(len(k)):
    pdf = stats.weibull(k[i], 1.0)
    pdf_values = [pdf(j) for j in x]
    axis.plot(x, pdf_values, label=f"k={k[i]}")
axis.legend()
config.save_post_asset(figure, "metropolis_hastings_sampling", "weibull_distribution_parameters")

# %%
## arcsine

x = numpy.linspace(0.001, 0.999, 200)
pdf = [stats.arcsine(j) for j in x]

figure, axis = pyplot.subplots(figsize=(10, 7))
axis.set_xlabel("X")
axis.set_ylabel("PDF")
axis.set_xlim([0.0, 1.0])
axis.set_title(f"Arcsine Distribution")
axis.plot(x, pdf)
config.save_post_asset(figure, "metropolis_hastings_sampling", "arcsine_distribution_parameters")

# %%
## bimodal normal

x = numpy.linspace(-7.0, 7.0, 200)
pdf = [stats.bimodal_normal(j, 1.2) for j in x]
Beispiel #5
0
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import scipy.stats as sts
# %matplotlib inline

# Сгенерируем выборку объёма 1000 из arcsine распределения
arcsine_rv = sts.arcsine()
sample = arcsine_rv.rvs(1000)

# Гистограмма выборки и теоретическая плотность распределения поверх нее:
plt.hist(sample, normed=True)
plt.ylabel('number of samples')

# на том же графике построим теоретическую плотность распределения:
x = np.linspace(0, 1, 1000)
pdf = arcsine_rv.pdf(x)
plt.plot(x, pdf, label='theoretical pdf', alpha=0.5)
plt.legend()
plt.ylabel('$f(x)$')
plt.xlabel('$x$')


def histogram(n, mean, variance):
    # Генерируем 1000 выборочных средних
    mead_sample = [np.mean(arcsine_rv.rvs(n)) for i in range(1000)]

    # Строим нормальное распределение на основе значений дисперсии и мат. ожидания
    norm_rv = sts.norm(mean, np.sqrt(variance / n))

    # Строим гистограмму распределения выборочных средних
Beispiel #6
0
def arcsine(n=100, loc=0, scale=1):
    '''
    arcsine distribution

    n - розмір вибірки
    loc - середина
    scale - відхилення

    Повертає список вигляду [згенерована вибірка, список x, список y, середнє, мода, медіана,
    розмах, девіація, варіанса, стандарт, варіація, асиметрія, ексцес]
    '''
    distribution = st.arcsine(loc=loc, scale=scale)
    sample = list(distribution.rvs(size=n))

    for i in range(len(sample)):
        sample[i] = round(sample[i], 2)

    var = list(sample)
    var.sort()
    x = list(set(sample))
    y = list()
    x.sort()

    freq_table = dict()

    for num in x:
        freq_table[num] = sample.count(num)

    int_len = ((max(sample) - min(sample)) / r(sample))
    int_bounds = list()
    next = min(sample)

    for i in range(r(sample)):
        int_bounds.append(round(next, 2))
        next += int_len

    int_bounds.append(max(sample))

    freq_table = dict()
    int_list = list()

    for i in range(len(int_bounds) - 1):
        int_list.append([int_bounds[i], int_bounds[i + 1]])

    for i in range(len(int_list)):
        if i != len(int_list) - 1:
            freq_table["[" + str(int_list[i][0]) + "; " + str(int_list[i][1]) +
                       ")"] = 0
        else:
            freq_table["[" + str(int_list[i][0]) + "; " + str(int_list[i][1]) +
                       "]"] = 0

    for i in range(len(sample)):
        for j in range(len(int_list)):
            if sample[i] >= int_list[j][0] and sample[i] < int_list[j][
                    1] and j != len(int_list) - 1:
                freq_table["[" + str(int_list[j][0]) + "; " +
                           str(int_list[j][1]) + ")"] += 1

            elif sample[i] >= int_list[j][0] and sample[i] <= int_list[j][
                    1] and j == len(int_list) - 1:
                freq_table["[" + str(int_list[j][0]) + "; " +
                           str(int_list[j][1]) + "]"] += 1

    int_list_values = list()
    for key in freq_table:
        int_list_values.append(int(freq_table[key]))

    intr = list(freq_table.keys())

    centered_int = list()
    for intr in int_list:
        centered_int.append(round(((intr[0] + intr[1]) / 2), 3))

    freq_table_disc = dict()
    x = list(set(sample))
    for num in x:
        freq_table_disc[num] = sample.count(num)

    result = list()
    result.append(sample)

    start = distribution.ppf(0.01)
    end = distribution.ppf(0.99)
    x = list(np.linspace(start, end, n))
    y = list(distribution.pdf(x))
    result.append(x)
    result.append(y)

    mean = np.mean(sample)
    result.append(mean)

    moda = list(mode(freq_table_disc).keys())
    result.append(moda)

    med = statistics.median(sample)
    result.append(med)

    ro = max(sample) - min(sample)
    result.append(ro)

    deviation = dev(freq_table_disc)
    result.append(deviation)

    variansa = dev(freq_table_disc) / (len(sample) - 1)
    result.append(variansa)

    standart = math.sqrt(variansa)
    result.append(standart)

    variation = standart / np.mean(sample)

    asym = st.skew(sample)
    result.append(asym)

    ex = st.kurtosis(sample)
    result.append(ex)

    return result