def _spearman_r(X, Y): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. """ rho, p_value = spearman(X, Y) return rho
def __get_speaker_accommodation(self, speaker: str): accommodationPath = self.cfg.paths[ 'accommPath'] + speaker + self.fileSuffix for task in self.__get_tasks(speaker): with open(accommodationPath, 'r') as f: reader = csv.reader(f) times, distances = self.__extract_task_ratios(reader, task) correlation = stats.spearman(times, distances) spearCoefficient = correlation[0] pValue = correlation[1] taskLength = max( times ) # Approximate the task end by the start of the last word. row = [ speaker + " " + task, spearCoefficient, abs(spearCoefficient), pValue, taskLength ] print(",".join(row))
pos2 = np.stack(([values_LesothoN,values_SAN]),axis = 0) print(np.cov(pos1)) print(np.cov(pos2)) rv = mvn([mean_Lesotho,mean_SA],np.cov(pos1)) rv1 = mvn([mean_LesothoN,mean_SAN],np.cov(pos2)) x1,y1 = np.mgrid[300:450:0.5, 300:400:0.5] posnew = np.dstack((x1,y1)) levels = [0.01,0.05, 0.10, 0.50, 0.90,0.95,0.99] levels1 = [0.88,0.90,0.91,0.92,0.93, 0.94,0.95, 0.96,0.965,0.97, 0.975,0.976,0.977,0.978,0.979,0.98,0.981,0.982,0.983,0.985,0.987, 0.99,0.991, 0.992, 0.993, 0.994,0.995, 0.996, 0.997, 0.998, 0.999] kendal = kdtau(values_Lesotho,values_SA) spearman = spearman(values_Lesotho,values_SA) print(kendal) print(spearman[0]) #### data_normalized = pd.DataFrame({'val-L':values_Lesotho-np.mean(values_Lesotho),'val-SA': values_SA-np.mean(values_SA)}) data_normalized_N = pd.DataFrame({'val-L':values_LesothoN-np.mean(values_LesothoN),'val-SA': values_SAN-np.mean(values_SAN)}) data_small = data_normalized[data_normalized['val-L']<0 & (data_normalized['val-SA'] < 0)] data_small1 = data_normalized_N[data_normalized_N['val-L']<0 & (data_normalized_N['val-SA'] < 0)] print(np.corrcoef(data_small['val-L'],data_small['val-SA'])) print(np.corrcoef(data_small1['val-L'],data_small1['val-SA'])) fig, ax = plt.subplots() ax.plot(values_Lesotho,values_SA,'ro',markersize='2.0') ax.plot(values_LesothoN,values_SAN,'bo', markersize='2.0')
plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() plot_roc_curve() ### SCC and PCC scc = stats.spearman(pred, targets) def plot_scc(): plt.title('Spearmans Correlation Coefficient') plt.scatter(y_test.flatten().detach().numpy(), pred.flatten().detach().numpy(), label = 'SCC = %0.2f' % scc) plt.legend(loc = 'lower right') plt.ylabel('Predicted') plt.xlabel('Validation targets') plt.show() pcc = stats.pearsonr(pred, targets) def plot_scc(): plt.title('Pearsons Correlation Coefficient') plt.scatter(y_test.flatten().detach().numpy(), pred.flatten().detach().numpy(), label = 'PCC = %0.2f' % pcc) plt.legend(loc = 'lower right') plt.ylabel('Predicted')