Beispiel #1
0
def _msge_with_gradient_underdetermined(data, delta, xvschema, skipstep, p):
    """ Calculate the mean squared generalization error and it's gradient for
    underdetermined equation system.
    """
    (l, m, t) = data.shape
    d = None
    j, k = 0, 0
    nt = sp.ceil(t / skipstep)
    for trainset, testset in xvschema(t, skipstep):

        (a, b) = _construct_var_eqns(sp.atleast_3d(data[:, :, trainset]), p)
        (c, d) = _construct_var_eqns(sp.atleast_3d(data[:, :, testset]), p)

        e = sp.linalg.inv(sp.eye(a.shape[0]) * delta**2 + a.dot(a.transpose()))

        cc = c.transpose().dot(c)

        be = b.transpose().dot(e)
        bee = be.dot(e)
        bea = be.dot(a)
        beea = bee.dot(a)
        beacc = bea.dot(cc)
        dc = d.transpose().dot(c)

        j += sp.sum(beacc * bea - 2 * bea * dc) + sp.sum(d**2)
        k += sp.sum(beea * dc - beacc * beea) * 4 * delta

    return j / (nt * d.size), k / (nt * d.size)
Beispiel #2
0
    def _msge_with_gradient_underdetermined(self, data, delta, xvschema, skipstep):
        """ Calculate the mean squared generalization error and it's gradient for underdetermined equation system.
        """
        (l, m, t) = data.shape
        d = None
        j, k = 0, 0
        nt = sp.ceil(t / skipstep)
        for s in range(0, t, skipstep):
            trainset, testset = xvschema(s, t)

            (a, b) = self._construct_eqns(sp.atleast_3d(data[:, :, trainset]))
            (c, d) = self._construct_eqns(sp.atleast_3d(data[:, :, testset]))

            e = sp.linalg.inv(sp.eye(a.shape[0]) * delta ** 2 + a.dot(a.transpose()))

            cc = c.transpose().dot(c)

            be = b.transpose().dot(e)
            bee = be.dot(e)
            bea = be.dot(a)
            beea = bee.dot(a)
            beacc = bea.dot(cc)
            dc = d.transpose().dot(c)

            j += sp.sum(beacc * bea - 2 * bea * dc) + sp.sum(d ** 2)
            k += sp.sum(beea * dc - beacc * beea) * 4 * delta

        return j / (nt * d.size), k / (nt * d.size)
Beispiel #3
0
Datei: var.py Projekt: bjura/scot
def _msge_with_gradient_overdetermined(data, delta, xvschema, skipstep, p):
    """ Calculate the mean squared generalization error and it's gradient for
    overdetermined equation system.
    """
    (l, m, t) = data.shape
    d = None
    l, k = 0, 0
    nt = sp.ceil(t / skipstep)
    for trainset, testset in xvschema(t, skipstep):

        (a, b) = _construct_var_eqns(sp.atleast_3d(data[:, :, trainset]), p)
        (c, d) = _construct_var_eqns(sp.atleast_3d(data[:, :, testset]), p)

        e = sp.linalg.inv(sp.eye(a.shape[1]) * delta ** 2 +
                          a.transpose().dot(a))

        ba = b.transpose().dot(a)
        dc = d.transpose().dot(c)
        bae = ba.dot(e)
        baee = bae.dot(e)
        baecc = bae.dot(c.transpose().dot(c))

        l += sp.sum(baecc * bae - 2 * bae * dc) + sp.sum(d ** 2)
        k += sp.sum(baee * dc - baecc * baee) * 4 * delta

    return l / (nt * d.size), k / (nt * d.size)
Beispiel #4
0
def _msge_with_gradient_overdetermined(data, delta, xvschema, skipstep, p):
    """ Calculate the mean squared generalization error and it's gradient for
    overdetermined equation system.
    """
    (l, m, t) = data.shape
    d = None
    l, k = 0, 0
    nt = sp.ceil(t / skipstep)
    for trainset, testset in xvschema(t, skipstep):

        (a, b) = _construct_var_eqns(sp.atleast_3d(data[:, :, trainset]), p)
        (c, d) = _construct_var_eqns(sp.atleast_3d(data[:, :, testset]), p)

        e = sp.linalg.inv(sp.eye(a.shape[1]) * delta**2 + a.transpose().dot(a))

        ba = b.transpose().dot(a)
        dc = d.transpose().dot(c)
        bae = ba.dot(e)
        baee = bae.dot(e)
        baecc = bae.dot(c.transpose().dot(c))

        l += sp.sum(baecc * bae - 2 * bae * dc) + sp.sum(d**2)
        k += sp.sum(baee * dc - baecc * baee) * 4 * delta

    return l / (nt * d.size), k / (nt * d.size)
Beispiel #5
0
    def _msge_with_gradient_overdetermined(self, data, delta, xvschema, skipstep):
        """ Calculate the mean squared generalization error and it's gradient for overdetermined equation system.
        """
        (l, m, t) = data.shape
        d = None
        l, k = 0, 0
        nt = sp.ceil(t / skipstep)
        for s in range(0, t, skipstep):
            #print(s,drange)
            trainset, testset = xvschema(s, t)

            (a, b) = self._construct_eqns(sp.atleast_3d(data[:, :, trainset]))
            (c, d) = self._construct_eqns(sp.atleast_3d(data[:, :, testset]))

            #e = sp.linalg.inv(np.eye(a.shape[1])*delta**2 + a.transpose().dot(a), overwrite_a=True, check_finite=False)
            e = sp.linalg.inv(sp.eye(a.shape[1]) * delta ** 2 + a.transpose().dot(a))

            ba = b.transpose().dot(a)
            dc = d.transpose().dot(c)
            bae = ba.dot(e)
            baee = bae.dot(e)
            baecc = bae.dot(c.transpose().dot(c))

            l += sp.sum(baecc * bae - 2 * bae * dc) + sp.sum(d ** 2)
            k += sp.sum(baee * dc - baecc * baee) * 4 * delta

        return l / (nt * d.size), k / (nt * d.size)
Beispiel #6
0
    def fit(self, data):
        """ Fit VAR model to data.
        
        Parameters
        ----------
        data : array-like
            shape = [n_samples, n_channels, n_trials] or
            [n_samples, n_channels]
            Continuous or segmented data set.
            
        Returns
        -------
        self : :class:`VAR`
            The :class:`VAR` object to facilitate method chaining (see usage
            example)
        """
        data = sp.atleast_3d(data)

        if self.delta == 0 or self.delta is None:
            # ordinary least squares
            (x, y) = self._construct_eqns(data)
        else:
            # regularized least squares (ridge regression)
            (x, y) = self._construct_eqns_rls(data)

        (b, res, rank, s) = sp.linalg.lstsq(x, y)

        self.coef = b.transpose()

        self.residuals = data - self.predict(data)
        self.rescov = sp.cov(cat_trials(self.residuals[self.p:, :, :]),
                             rowvar=False)

        return self
Beispiel #7
0
    def fit(self, data):
        """ Fit VAR model to data.
        
        Parameters
        ----------
        data : array-like, shape = [n_samples, n_channels, n_trials] or [n_samples, n_channels]
            Continuous or segmented data set.
            
        Returns
        -------
        self : :class:`VAR`
            The :class:`VAR` object to facilitate method chaining (see usage example)
        """
        data = sp.atleast_3d(data)

        if self.delta == 0 or self.delta is None:
            # ordinary least squares
            (x, y) = self._construct_eqns(data)
        else:
            # regularized least squares (ridge regression)
            (x, y) = self._construct_eqns_rls(data)

        (b, res, rank, s) = sp.linalg.lstsq(x, y)

        self.coef = b.transpose()

        self.residuals = data - self.predict(data)
        self.rescov = sp.cov(cat_trials(self.residuals), rowvar=False)

        return self
    def __init__(self, template, spacing=[1, 1, 1], **kwargs):

        template = sp.atleast_3d(template)
        super().__init__(shape=template.shape, **kwargs)

        coords = sp.unravel_index(range(template.size), template.shape)
        self['pore.template_coords'] = sp.vstack(coords).T
        self['pore.template_indices'] = self.Ps
        self['pore.drop'] = template.flatten() == 0
        topotools.trim(network=self, pores=self.pores('drop'))
        del self['pore.drop']
Beispiel #9
0
def apply_chords(im, spacing=0, axis=0, trim_edges=True):
    r"""
    Adds chords to the void space in the specified direction.  The chords are
    separated by 1 voxel plus the provided spacing.

    Parameters
    ----------
    im : ND-array
        An image of the porous material with void marked as True.

    spacing : int (default = 0)
        Chords are automatically separated by 1 voxel and this argument
        increases the separation.

    axis : int (default = 0)
        The axis along which the chords are drawn.

    trim_edges : bool (default = True)
        Whether or not to remove chords that touch the edges of the image.
        These chords are artifically shortened, so skew the chord length
        distribution

    Returns
    -------
    An ND-array of the same size as ```im``` with True values indicating the
    chords.

    See Also
    --------
    apply_chords_3D

    """
    if spacing < 0:
        raise Exception('Spacing cannot be less than 0')
    dims1 = sp.arange(0, im.ndim)
    dims2 = sp.copy(dims1)
    dims2[axis] = 0
    dims2[0] = axis
    im = sp.moveaxis(a=im, source=dims1, destination=dims2)
    im = sp.atleast_3d(im)
    ch = sp.zeros_like(im, dtype=bool)
    if im.ndim == 2:
        ch[:, ::2+spacing, ::2+spacing] = 1
    if im.ndim == 3:
        ch[:, ::4+2*spacing, ::4+2*spacing] = 1
    chords = im*ch
    chords = sp.squeeze(chords)
    if trim_edges:
        temp = clear_border(spim.label(chords == 1)[0]) > 0
        chords = temp*chords
    chords = sp.moveaxis(a=chords, source=dims1, destination=dims2)
    return chords
Beispiel #10
0
def bundle_of_tubes(shape: List[int], spacing: int):
    r"""
    Create a 3D image of a bundle of tubes, in the form of a rectangular
    plate with randomly sized holes through it.

    Parameters
    ----------
    shape : list
        The size the image, with the 3rd dimension indicating the plate
        thickness.  If the 3rd dimension is not given then a thickness of
        1 voxel is assumed.

    spacing : scalar
        The center to center distance of the holes.  The hole sizes will be
        randomly distributed between this values down to 3 voxels.

    Returns
    -------
    image : ND-array
        A boolean array with ``True`` values denoting the pore space
    """
    shape = sp.array(shape)
    if sp.size(shape) == 1:
        shape = sp.full((3, ), int(shape))
    if sp.size(shape) == 2:
        shape = sp.hstack((shape, [1]))
    temp = sp.zeros(shape=shape[:2])
    Xi = sp.ceil(sp.linspace(spacing/2,
                             shape[0]-(spacing/2)-1,
                             int(shape[0]/spacing)))
    Xi = sp.array(Xi, dtype=int)
    Yi = sp.ceil(sp.linspace(spacing/2,
                             shape[1]-(spacing/2)-1,
                             int(shape[1]/spacing)))
    Yi = sp.array(Yi, dtype=int)
    temp[tuple(sp.meshgrid(Xi, Yi))] = 1
    inds = sp.where(temp)
    for i in range(len(inds[0])):
        r = sp.random.randint(1, (spacing/2))
        try:
            s1 = slice(inds[0][i]-r, inds[0][i]+r+1)
            s2 = slice(inds[1][i]-r, inds[1][i]+r+1)
            temp[s1, s2] = ps_disk(r)
        except ValueError:
            odd_shape = sp.shape(temp[s1, s2])
            temp[s1, s2] = ps_disk(r)[:odd_shape[0], :odd_shape[1]]
    im = sp.broadcast_to(array=sp.atleast_3d(temp), shape=shape)
    return im
Beispiel #11
0
    def __init__(self, template, spacing=[1, 1, 1], **kwargs):

        template = sp.atleast_3d(template)
        if 'shape' in kwargs:
            del kwargs['shape']
            logger.warning('shape argument ignored, inferred from template')
        super().__init__(shape=template.shape, spacing=spacing, **kwargs)

        coords = sp.unravel_index(range(template.size), template.shape)
        self['pore.template_coords'] = sp.vstack(coords).T
        self['pore.template_indices'] = self.Ps
        self['pore.drop'] = template.flatten() == 0
        topotools.trim(network=self, pores=self.pores('drop'))
        del self['pore.drop']
        # remove labels pertaining to surface pores, then redo post-trim
        self.clear(mode='labels')
        self['pore.internal'] = True
        self['throat.internal'] = True
        topotools.find_surface_pores(self)
Beispiel #12
0
    def predict(self, data):
        """ Predict samples on actual data.

        The result of this function is used for calculating the residuals.

        Parameters
        ----------
        data : array-like
            shape = [n_samples, n_channels, n_trials] or
            [n_samples, n_channels]
            Continuous or segmented data set.

        Returns
        -------
        predicted : shape = `data`.shape
            Data as predicted by the VAR model.

        Notes
        -----
        Residuals are obtained by r = x - var.predict(x)
        """
        data = sp.atleast_3d(data)
        (l, m, t) = data.shape

        p = int(sp.shape(self.coef)[1] / m)

        y = sp.zeros(data.shape)
        if t > l-p:  # which takes less loop iterations
            for k in range(1, p + 1):
                bp = self.coef[:, (k - 1)::p]
                for n in range(p, l):
                    y[n, :, :] += bp.dot(data[n - k, :, :])
        else:
            for k in range(1, p + 1):
                bp = self.coef[:, (k - 1)::p]
                for s in range(t):
                    y[p:, :, s] += data[(p - k):(l - k), :, s].dot(bp.T)

        return y
Beispiel #13
0
def get_subscripts(network, shape, **kwargs):
    r'''
    Return the 3D subscripts (i,j,k) into the cubic network

    Parameters
    ----------
    shape : list
        The (i,j,k) shape of the network in number of pores in each direction

    '''
    if network.num_pores('internal') != _sp.prod(shape):
        print('Supplied shape does not match Network size, cannot proceed')
    else:
        template = _sp.atleast_3d(_sp.empty(shape))
        a = _sp.indices(_sp.shape(template))
        i = a[0].flatten()
        j = a[1].flatten()
        k = a[2].flatten()
        ind = _sp.vstack((i, j, k)).T
        vals = _sp.ones((network.Np, 3)) * _sp.nan
        vals[network.pores('internal')] = ind
        return vals
Beispiel #14
0
    def predict(self, data):
        """ Predict samples on actual data.
        
        The result of this function is used for calculating the residuals.
        
        Parameters
        ----------
        data : array-like
            shape = [n_samples, n_channels, n_trials] or
            [n_samples, n_channels]
            Continuous or segmented data set.
            
        Returns
        -------
        predicted : shape = `data`.shape
            Data as predicted by the VAR model.
            
        Notes
        -----
        Residuals are obtained by r = x - var.predict(x)
        """
        data = sp.atleast_3d(data)
        (l, m, t) = data.shape

        p = int(sp.shape(self.coef)[1] / m)

        y = sp.zeros(data.shape)
        if t > l-p:  # which takes less loop iterations
            for k in range(1, p + 1):
                bp = self.coef[:, (k - 1)::p]
                for n in range(p, l):
                    y[n, :, :] += bp.dot(data[n - k, :, :])
        else:
            for k in range(1, p + 1):
                bp = self.coef[:, (k - 1)::p]
                for s in range(t):
                    y[p:, :, s] += data[(p - k):(l - k), :, s].dot(bp.T)

        return y
Beispiel #15
0
def get_subscripts(network, shape, **kwargs):
    r"""
    Return the 3D subscripts (i,j,k) into the cubic network

    Parameters
    ----------
    shape : list
        The (i,j,k) shape of the network in number of pores in each direction

    """
    if network.num_pores('internal') != _sp.prod(shape):
        print('Supplied shape does not match Network size, cannot proceed')
    else:
        template = _sp.atleast_3d(_sp.empty(shape))
        a = _sp.indices(_sp.shape(template))
        i = a[0].flatten()
        j = a[1].flatten()
        k = a[2].flatten()
        ind = _sp.vstack((i, j, k)).T
        vals = _sp.ones((network.Np, 3))*_sp.nan
        vals[network.pores('internal')] = ind
        return vals
Beispiel #16
0
    def fromarray(self, array, propname):
        r"""
        Apply data to the network based on a rectangular array filled with
        values.  Each array location corresponds to a pore in the network.

        Parameters
        ----------
        array : array_like
            The rectangular array containing the values to be added to the
            network. This array must be the same shape as the original network.

        propname : string
            The name of the pore property being added.
        """
        array = sp.atleast_3d(array)
        if sp.shape(array) != self._shape:
            raise Exception('The received array does not match the original network')
        temp = array.flatten()
        Ps = sp.array(self['pore.index'][self.pores('internal')], dtype=int)
        propname = 'pore.' + propname.split('.')[-1]
        self[propname] = sp.nan
        self[propname][self.pores('internal')] = temp[Ps]
Beispiel #17
0
    def fit(self, data):
        """ Fit VAR model to data.
        
        Parameters
        ----------
        data : array-like, shape = [n_samples, n_channels, n_trials] or [n_samples, n_channels]
            Continuous or segmented data set.
            
        Returns
        -------
        self : :class:`VAR`
            The :class:`VAR` object.
        """
        data = sp.atleast_3d(data)
        (x, y) = self._construct_eqns(data)
        self.fitting_model.fit(x, y)

        self.coef = self.fitting_model.coef_

        self.residuals = data - self.predict(data)
        self.rescov = sp.cov(datatools.cat_trials(self.residuals[self.p :, :, :]), rowvar=False)

        return self
Beispiel #18
0
    def fit(self, data):
        """ Fit VAR model to data.
        
        Parameters
        ----------
        data : array-like, shape = [n_samples, n_channels, n_trials] or [n_samples, n_channels]
            Continuous or segmented data set.
            
        Returns
        -------
        self : :class:`VAR`
            The :class:`VAR` object.
        """
        data = sp.atleast_3d(data)
        (x, y) = self._construct_eqns(data)
        self.fitting_model.fit(x, y)

        self.coef = self.fitting_model.coef_

        self.residuals = data - self.predict(data)
        self.rescov = sp.cov(datatools.cat_trials(self.residuals[self.p:, :, :]), rowvar=False)

        return self
Beispiel #19
0
 def fromarray(self, array, propname):
     r'''
     Apply data to the network based on a rectangular array filled with 
     values.  Each array location corresponds to a pore in the network.
     
     Parameters
     ----------
     array : array_like
         The rectangular array containing the values to be added to the
         network. This array must be the same shape as the original network.
         
     propname : string
         The name of the pore property being added.
     '''
     array = sp.atleast_3d(array)
     if sp.shape(array) != self._shape:
         raise Exception(
             'The received array does not match the original network')
     temp = array.flatten()
     Ps = sp.array(self['pore.index'][self.pores('internal')], dtype=int)
     propname = 'pore.' + propname.split('.')[-1]
     self[propname] = sp.nan
     self[propname][self.pores('internal')] = temp[Ps]
Beispiel #20
0
    def optimize_delta_bisection(self, data, skipstep=1):
        """ Find optimal ridge penalty with bisection search.
        
        Parameters
        ----------
        data : array-like
            shape = [n_samples, n_channels, n_trials] or
            [n_samples, n_channels]
            Continuous or segmented data set.
        skipstep : int, optional
            Speed up calculation by skipping samples during cost function
            calculation
            
        Returns
        -------
        self : :class:`VAR`
            The :class:`VAR` object to facilitate method chaining (see usage
            example)
        """
        data = sp.atleast_3d(data)
        (l, m, t) = data.shape
        assert (t > 1)

        maxsteps = 10
        maxdelta = 1e50

        a = -10
        b = 10

        trform = lambda x: sp.sqrt(sp.exp(x))

        msge = _get_msge_with_gradient_func(data.shape, self.p)

        (ja, ka) = msge(data, trform(a), self.xvschema, skipstep, self.p)
        (jb, kb) = msge(data, trform(b), self.xvschema, skipstep, self.p)

        # before starting the real bisection, assure the interval contains 0
        while sp.sign(ka) == sp.sign(kb):
            print('Bisection initial interval (%f,%f) does not contain zero. '
                  'New interval: (%f,%f)' % (a, b, a * 2, b * 2))
            a *= 2
            b *= 2
            (ja, ka) = msge(data, trform(a), self.xvschema, skipstep, self.p)
            (jb, kb) = msge(data, trform(b), self.xvschema, skipstep, self.p)

            if trform(b) >= maxdelta:
                print('Bisection: could not find initial interval.')
                print(' ********* Delta set to zero! ************ ')
                return 0

        nsteps = 0

        while nsteps < maxsteps:

            # point where the line between a and b crosses zero
            # this is not very stable!
            #c = a + (b-a) * np.abs(ka) / np.abs(kb-ka)
            c = (a + b) / 2
            (j, k) = msge(data, trform(c), self.xvschema, skipstep, self.p)
            if sp.sign(k) == sp.sign(ka):
                a, ka = c, k
            else:
                b, kb = c, k

            nsteps += 1
            tmp = trform([a, b, a + (b - a) * np.abs(ka) / np.abs(kb - ka)])
            print('%d Bisection Interval: %f - %f, (projected: %f)' %
                  (nsteps, tmp[0], tmp[1], tmp[2]))

        self.delta = trform(a + (b - a) * np.abs(ka) / np.abs(kb - ka))
        print('Final point: %f' % self.delta)
        return self
Beispiel #21
0
def image_preprocessing(arr,params):

    arr = sp.atleast_3d(arr)

    smallest_edge = min(arr.shape[:2])

    rep = params
    
    preproc_lsum = rep['preproc']['lsum_ksize']
    if preproc_lsum is None:
        preproc_lsum = 1
    smallest_edge -= (preproc_lsum-1)
            
    normin_kshape = rep['normin']['kshape']
    smallest_edge -= (normin_kshape[0]-1)

    filter_kshape = rep['filter']['kshape']
    smallest_edge -= (filter_kshape[0]-1)
        
    normout_kshape = rep['normout']['kshape']
    smallest_edge -= (normout_kshape[0]-1)
        
    pool_lsum = rep['pool']['lsum_ksize']
    smallest_edge -= (pool_lsum-1)

    arrh, arrw, _ = arr.shape

    if smallest_edge <= 0 and rep['conv_mode'] == 'valid':
        if arrh > arrw:
            new_w = arrw - smallest_edge + 1
            new_h =  int(np.round(1.*new_w  * arrh/arrw))
            print new_w, new_h
            raise
        elif arrh < arrw:
            new_h = arrh - smallest_edge + 1
            new_w =  int(np.round(1.*new_h  * arrw/arrh))
            print new_w, new_h
            raise
        else:
            pass
    
    # TODO: finish image size adjustment
    assert min(arr.shape[:2]) > 0

    # use the first 3 channels only
    orig_imga = arr.astype("float32")[:,:,:3]

    # make sure that we don't have a 3-channel (pseudo) gray image
    if orig_imga.shape[2] == 3 \
            and (orig_imga[:,:,0]-orig_imga.mean(2) < 0.1*orig_imga.max()).all() \
            and (orig_imga[:,:,1]-orig_imga.mean(2) < 0.1*orig_imga.max()).all() \
            and (orig_imga[:,:,2]-orig_imga.mean(2) < 0.1*orig_imga.max()).all():
        orig_imga = sp.atleast_3d(orig_imga[:,:,0])

    # rescale to [0,1]
    #print orig_imga.min(), orig_imga.max()
    if orig_imga.min() == orig_imga.max():
        raise MinMaxError("[ERROR] orig_imga.min() == orig_imga.max() "
                          "orig_imga.min() = %f, orig_imga.max() = %f"
                          % (orig_imga.min(), orig_imga.max())
                          )
    
    orig_imga -= orig_imga.min()
    orig_imga /= orig_imga.max()

    # -- color conversion
    # insure 3 dims
    #print orig_imga.shape
    if orig_imga.ndim == 2 or orig_imga.shape[2] == 1:
        orig_imga_new = sp.empty(orig_imga.shape[:2] + (3,), dtype="float32")
        orig_imga.shape = orig_imga_new[:,:,0].shape
        orig_imga_new[:,:,0] = 0.2989*orig_imga
        orig_imga_new[:,:,1] = 0.5870*orig_imga
        orig_imga_new[:,:,2] = 0.1141*orig_imga
        orig_imga = orig_imga_new    


    if params['color_space'] == 'rgb':
        orig_imga_conv = orig_imga
#     elif params['color_space'] == 'rg':
#         orig_imga_conv = colorconv.rg_convert(orig_imga)
    elif params['color_space'] == 'rg2':
        orig_imga_conv = colorconv.rg2_convert(orig_imga)
    elif params['color_space'] == 'gray':
        orig_imga_conv = colorconv.gray_convert(orig_imga)
        orig_imga_conv.shape = orig_imga_conv.shape + (1,)
    elif params['color_space'] == 'opp':
        orig_imga_conv = colorconv.opp_convert(orig_imga)
    elif params['color_space'] == 'oppnorm':
        orig_imga_conv = colorconv.oppnorm_convert(orig_imga)
    elif params['color_space'] == 'chrom':
        orig_imga_conv = colorconv.chrom_convert(orig_imga)
#     elif params['color_space'] == 'opponent':
#         orig_imga_conv = colorconv.opponent_convert(orig_imga)
#     elif params['color_space'] == 'W':
#         orig_imga_conv = colorconv.W_convert(orig_imga)
    elif params['color_space'] == 'hsv':
        orig_imga_conv = colorconv.hsv_convert(orig_imga)
    else:
        raise ValueError, "params['color_space'] not understood"
        
    return orig_imga,orig_imga_conv
Beispiel #22
0
def regionprops_3D(im):
    r"""
    Calculates various metrics for each labeled region in a 3D image.

    The ``regionsprops`` method in **skimage** is very thorough for 2D images,
    but is a bit limited when it comes to 3D images, so this function aims
    to fill this gap.

    Parameters
    ----------
    im : array_like
        An imaging containing at least one labeled region.  If a boolean image
        is received than the ``True`` voxels are treated as a single region
        labeled ``1``.  Regions labeled 0 are ignored in all cases.

    Returns
    -------
    An augmented version of the list returned by skimage's ``regionprops``.
    Information, such as ``volume``, can be found for region A using the
    following syntax: ``result[A-1].volume``.

    Notes
    -----
    This function may seem slow compared to the skimage version, but that is
    because they defer calculation of certain properties until they are
    accessed while this one evalulates everything (inlcuding the deferred
    properties from skimage's ``regionprops``)

    Regions can be identified using a watershed algorithm, which can be a bit
    tricky to obtain desired results.  *PoreSpy* includes the SNOW algorithm,
    which may be helpful.

    """
    print('_' * 60)
    print('Calculating regionprops')

    results = regionprops(im, coordinates='xy')
    for i in tqdm(range(len(results))):
        mask = results[i].image
        mask_padded = sp.pad(mask, pad_width=1, mode='constant')
        temp = spim.distance_transform_edt(mask_padded)
        dt = extract_subsection(temp, shape=mask.shape)
        # ---------------------------------------------------------------------
        # Slice indices
        results[i].slice = results[i]._slice
        # ---------------------------------------------------------------------
        # Volume of regions in voxels
        results[i].volume = results[i].area
        # ---------------------------------------------------------------------
        # Volume of bounding box, in voxels
        results[i].bbox_volume = sp.prod(mask.shape)
        # ---------------------------------------------------------------------
        # Create an image of the border
        results[i].border = dt == 1
        # ---------------------------------------------------------------------
        # Create an image of the maximal inscribed sphere
        r = dt.max()
        inv_dt = spim.distance_transform_edt(dt < r)
        results[i].inscribed_sphere = inv_dt < r
        # ---------------------------------------------------------------------
        # Find surface area using marching cubes and analyze the mesh
        tmp = sp.pad(sp.atleast_3d(mask), pad_width=1, mode='constant')
        tmp = spim.convolve(tmp, weights=ball(1)) / 5
        verts, faces, norms, vals = marching_cubes_lewiner(volume=tmp, level=0)
        results[i].surface_mesh_vertices = verts
        results[i].surface_mesh_simplices = faces
        area = mesh_surface_area(verts, faces)
        results[i].surface_area = area
        # ---------------------------------------------------------------------
        # Find sphericity
        vol = results[i].volume
        r = (3 / 4 / sp.pi * vol)**(1 / 3)
        a_equiv = 4 * sp.pi * (r)**2
        a_region = results[i].surface_area
        results[i].sphericity = a_equiv / a_region
        # ---------------------------------------------------------------------
        # Find skeleton of region
        results[i].skeleton = skeletonize_3d(mask)
        # ---------------------------------------------------------------------
        # Volume of convex image, equal to area in 2D, so just translating
        results[i].convex_volume = results[i].convex_area
        # ---------------------------------------------------------------------
        # Convert region grid to a graph
        am = grid_to_graph(*mask.shape, mask=mask)
        results[i].graph = am

    return results
Beispiel #23
0
    def optimize_delta_bisection(self, data, skipstep=1):
        """ Find optimal ridge penalty with bisection search.
        
        Parameters
        ----------
        data : array-like, shape = [n_samples, n_channels, n_trials] or [n_samples, n_channels]
            Continuous or segmented data set.
        skipstep : int, optional
            Speed up calculation by skipping samples during cost function calculation
            
        Returns
        -------
        self : :class:`VAR`
            The :class:`VAR` object to facilitate method chaining (see usage example)
        """
        data = sp.atleast_3d(data)
        (l, m, t) = data.shape
        assert (t > 1)

        maxsteps = 10
        maxdelta = 1e50

        a = -10
        b = 10

        transform = lambda x: sp.sqrt(sp.exp(x))

        msge = self._get_msge_with_gradient_func(data.shape)

        (ja, ka) = msge(data, transform(a), self.xvschema, skipstep)
        (jb, kb) = msge(data, transform(b), self.xvschema, skipstep)

        # before starting the real bisection, make sure the interval actually contains 0
        while sp.sign(ka) == sp.sign(kb):
            print('Bisection initial interval (%f,%f) does not contain zero. New interval: (%f,%f)' % (a, b, a * 2, b * 2))
            a *= 2
            b *= 2
            (jb, kb) = msge(data, transform(b), self.xvschema, skipstep)

            if transform(b) >= maxdelta:
                print('Bisection: could not find initial interval.')
                print(' ********* Delta set to zero! ************ ')
                return 0

        nsteps = 0

        while nsteps < maxsteps:

            # point where the line between a and b crosses zero
            # this is not very stable!
            #c = a + (b-a) * np.abs(ka) / np.abs(kb-ka)
            c = (a + b) / 2
            (j, k) = msge(data, transform(c), self.xvschema, skipstep)
            if sp.sign(k) == sp.sign(ka):
                a, ka = c, k
            else:
                b, kb = c, k

            nsteps += 1
            tmp = transform([a, b, a + (b - a) * np.abs(ka) / np.abs(kb - ka)])
            print('%d Bisection Interval: %f - %f, (projected: %f)' % (nsteps, tmp[0], tmp[1], tmp[2]))

        self.delta = transform(a + (b - a) * np.abs(ka) / np.abs(kb - ka))
        print('Final point: %f' % self.delta)
        return self
Beispiel #24
0
def regionprops_3D(im):
    r"""
    Calculates various metrics for each labeled region in a 3D image.

    The ``regionsprops`` method in **skimage** is very thorough for 2D images,
    but is a bit limited when it comes to 3D images, so this function aims
    to fill this gap.

    Parameters
    ----------
    im : array_like
        An imaging containing at least one labeled region.  If a boolean image
        is received than the ``True`` voxels are treated as a single region
        labeled ``1``.  Regions labeled 0 are ignored in all cases.

    Returns
    -------
    props : list
        An augmented version of the list returned by skimage's ``regionprops``.
        Information, such as ``volume``, can be found for region A using the
        following syntax: ``result[A-1].volume``.

        The returned list contains all the metrics normally returned by
        **skimage.measure.regionprops** plus the following:

        'slice': Slice indices into the image that can be used to extract the
        region

        'volume': Volume of the region in number of voxels.

        'bbox_volume': Volume of the bounding box that contains the region.

        'border': The edges of the region, found as the locations where
        the distance transform is 1.

        'inscribed_sphere': An image containing the largest sphere can can
        fit entirely inside the region.

        'surface_mesh_vertices': Obtained by applying the marching cubes
        algorithm on the region, AFTER first blurring the voxel image.  This
        allows marching cubes more freedom to fit the surface contours. See
        also ``surface_mesh_simplices``

        'surface_mesh_simplices': This accompanies ``surface_mesh_vertices``
        and together they can be used to define the region as a mesh.

        'surface_area': Calculated using the mesh obtained as described above,
        using the ``porespy.metrics.mesh_surface_area`` method.

        'sphericity': Defined as the ratio of the area of a sphere with the
        same volume as the region to the actual surface area of the region.

        'skeleton': The medial axis of the region obtained using the
        ``skeletonize_3D`` method from **skimage**.

        'convex_volume': Same as convex_area, but translated to a more
        meaningful name.

    See Also
    --------
    snow_partitioning

    Notes
    -----
    This function may seem slow compared to the skimage version, but that is
    because they defer calculation of certain properties until they are
    accessed, while this one evalulates everything (inlcuding the deferred
    properties from skimage's ``regionprops``)

    Regions can be identified using a watershed algorithm, which can be a bit
    tricky to obtain desired results.  *PoreSpy* includes the SNOW algorithm,
    which may be helpful.

    """
    print('_' * 60)
    print('Calculating regionprops')

    results = regionprops(im, coordinates='xy')
    for i in tqdm(range(len(results))):
        mask = results[i].image
        mask_padded = sp.pad(mask, pad_width=1, mode='constant')
        temp = spim.distance_transform_edt(mask_padded)
        dt = extract_subsection(temp, shape=mask.shape)
        # ---------------------------------------------------------------------
        # Slice indices
        results[i].slice = results[i]._slice
        # ---------------------------------------------------------------------
        # Volume of regions in voxels
        results[i].volume = results[i].area
        # ---------------------------------------------------------------------
        # Volume of bounding box, in voxels
        results[i].bbox_volume = sp.prod(mask.shape)
        # ---------------------------------------------------------------------
        # Create an image of the border
        results[i].border = dt == 1
        # ---------------------------------------------------------------------
        # Create an image of the maximal inscribed sphere
        r = dt.max()
        inv_dt = spim.distance_transform_edt(dt < r)
        results[i].inscribed_sphere = inv_dt < r
        # ---------------------------------------------------------------------
        # Find surface area using marching cubes and analyze the mesh
        tmp = sp.pad(sp.atleast_3d(mask), pad_width=1, mode='constant')
        tmp = spim.convolve(tmp, weights=ball(1)) / 5
        verts, faces, norms, vals = marching_cubes_lewiner(volume=tmp, level=0)
        results[i].surface_mesh_vertices = verts
        results[i].surface_mesh_simplices = faces
        area = mesh_surface_area(verts, faces)
        results[i].surface_area = area
        # ---------------------------------------------------------------------
        # Find sphericity
        vol = results[i].volume
        r = (3 / 4 / sp.pi * vol)**(1 / 3)
        a_equiv = 4 * sp.pi * (r)**2
        a_region = results[i].surface_area
        results[i].sphericity = a_equiv / a_region
        # ---------------------------------------------------------------------
        # Find skeleton of region
        results[i].skeleton = skeletonize_3d(mask)
        # ---------------------------------------------------------------------
        # Volume of convex image, equal to area in 2D, so just translating
        results[i].convex_volume = results[i].convex_area

    return results
Beispiel #25
0
            idx, x = d1[xitem]
            idy, y = d2[yitem]
            assert (idx==idy).all()

            sel = sp.bitwise_and(x, y)
            mfnames = fnames[idx][sel]

            nmfnames = len(mfnames)

            if nmfnames <= 0:
                continue

            mpath = path.join(output_path, xitem+'_'+yitem)            
            os.makedirs(mpath)
            for n, (fname1, fname2) in enumerate(mfnames):
                arr1 = sp.atleast_3d(sp.misc.imread(fname1).astype('float32'))
                arr2 = sp.atleast_3d(sp.misc.imread(fname2).astype('float32'))
                # grayscale?
                if arr1.shape[2] == 1:
                    arr1 = sp.concatenate([arr1,arr1,arr1], 2)
                if arr2.shape[2] == 1:
                    arr2 = sp.concatenate([arr2,arr2,arr2], 2)
                fullarr = sp.concatenate([arr1, arr2], axis=1)
                basename1 = path.basename(fname1)
                basename2 = path.basename(fname2)
                out_fname = path.join(mpath, "%s-%s" % (basename1, basename2))
                sp.misc.imsave(out_fname, fullarr)
                sys.stdout.write("\rProcessing '%s': "
                                 "%6.2f%%" % (mpath, (100.*(n+1.)/nmfnames)))
                sys.stdout.flush()
Beispiel #26
0
def v1like_fromarray(arr, params, featsel):
    """ Applies a simple V1-like model and generates a feature vector from
    its outputs.

    Inputs:
      arr -- image's array
      params -- representation parameters (dict)
      featsel -- features to include to the vector (dict)

    Outputs:
      fvector -- corresponding feature vector

    """

    if 'conv_mode' not in params:
        params['conv_mode'] = 'same'
    if 'color_space' not in params:
        params['color_space'] = 'gray'

    arr = sp.atleast_3d(arr)

    smallest_edge = min(arr.shape[:2])

    rep = params

    preproc_lsum = rep['preproc']['lsum_ksize']
    if preproc_lsum is None:
        preproc_lsum = 1
    smallest_edge -= (preproc_lsum-1)

    normin_kshape = rep['normin']['kshape']
    smallest_edge -= (normin_kshape[0]-1)

    filter_kshape = rep['filter']['kshape']
    smallest_edge -= (filter_kshape[0]-1)

    normout_kshape = rep['normout']['kshape']
    smallest_edge -= (normout_kshape[0]-1)

    pool_lsum = rep['pool']['lsum_ksize']
    smallest_edge -= (pool_lsum-1)

    arrh, arrw, _ = arr.shape

    if smallest_edge <= 0 and rep['conv_mode'] == 'valid':
        if arrh > arrw:
            new_w = arrw - smallest_edge + 1
            new_h =  int(np.round(1.*new_w  * arrh/arrw))
            print new_w, new_h
            raise
        elif arrh < arrw:
            new_h = arrh - smallest_edge + 1
            new_w =  int(np.round(1.*new_h  * arrw/arrh))
            print new_w, new_h
            raise
        else:
            pass

    # TODO: finish image size adjustment
    assert min(arr.shape[:2]) > 0

    # use the first 3 channels only
    orig_imga = arr.astype("float32")[:,:,:3]

    # make sure that we don't have a 3-channel (pseudo) gray image
    if orig_imga.shape[2] == 3 \
            and (orig_imga[:,:,0]-orig_imga.mean(2) < 0.1*orig_imga.max()).all() \
            and (orig_imga[:,:,1]-orig_imga.mean(2) < 0.1*orig_imga.max()).all() \
            and (orig_imga[:,:,2]-orig_imga.mean(2) < 0.1*orig_imga.max()).all():
        orig_imga = sp.atleast_3d(orig_imga[:,:,0])

    # rescale to [0,1]
    #print orig_imga.min(), orig_imga.max()
    if orig_imga.min() == orig_imga.max():
        raise MinMaxError("[ERROR] orig_imga.min() == orig_imga.max() "
                          "orig_imga.min() = %f, orig_imga.max() = %f"
                          % (orig_imga.min(), orig_imga.max())
                          )

    orig_imga -= orig_imga.min()
    orig_imga /= orig_imga.max()

    # -- color conversion
    # insure 3 dims
    #print orig_imga.shape
    if orig_imga.ndim == 2 or orig_imga.shape[2] == 1:
        orig_imga_new = sp.empty(orig_imga.shape[:2] + (3,), dtype="float32")
        orig_imga.shape = orig_imga_new[:,:,0].shape
        orig_imga_new[:,:,0] = 0.2989*orig_imga
        orig_imga_new[:,:,1] = 0.5870*orig_imga
        orig_imga_new[:,:,2] = 0.1141*orig_imga
        orig_imga = orig_imga_new

    # -
    if params['color_space'] == 'rgb':
        orig_imga_conv = orig_imga
#     elif params['color_space'] == 'rg':
#         orig_imga_conv = colorconv.rg_convert(orig_imga)
    elif params['color_space'] == 'rg2':
        orig_imga_conv = colorconv.rg2_convert(orig_imga)
    elif params['color_space'] == 'gray':
        orig_imga_conv = colorconv.gray_convert(orig_imga)
        orig_imga_conv.shape = orig_imga_conv.shape + (1,)
    elif params['color_space'] == 'opp':
        orig_imga_conv = colorconv.opp_convert(orig_imga)
    elif params['color_space'] == 'oppnorm':
        orig_imga_conv = colorconv.oppnorm_convert(orig_imga)
    elif params['color_space'] == 'chrom':
        orig_imga_conv = colorconv.chrom_convert(orig_imga)
#     elif params['color_space'] == 'opponent':
#         orig_imga_conv = colorconv.opponent_convert(orig_imga)
#     elif params['color_space'] == 'W':
#         orig_imga_conv = colorconv.W_convert(orig_imga)
    elif params['color_space'] == 'hsv':
        orig_imga_conv = colorconv.hsv_convert(orig_imga)
    else:
        raise ValueError, "params['color_space'] not understood"

    # -- process each map
    fvector_l = []

    for cidx in xrange(orig_imga_conv.shape[2]):
        imga0 = orig_imga_conv[:,:,cidx]

        assert(imga0.min() != imga0.max())

        # -- 0. preprocessing
        #imga0 = imga0 / 255.0

        # flip image ?
        if 'flip_lr' in params['preproc'] and params['preproc']['flip_lr']:
            imga0 = imga0[:,::-1]

        if 'flip_ud' in params['preproc'] and params['preproc']['flip_ud']:
            imga0 = imga0[::-1,:]

        # smoothing
        lsum_ksize = params['preproc']['lsum_ksize']
        conv_mode = params['conv_mode']
        if lsum_ksize is not None:
             k = sp.ones((lsum_ksize), 'f') / lsum_ksize
             imga0 = conv(conv(imga0, k[sp.newaxis,:], conv_mode),
                          k[:,sp.newaxis], conv_mode)

        # whiten full image (assume True)
        if 'whiten' not in params['preproc'] or params['preproc']['whiten']:
            imga0 -= imga0.mean()
            if imga0.std() != 0:
                imga0 /= imga0.std()

        # -- 1. input normalization
        imga1 = v1like_norm(imga0[:,:,sp.newaxis], conv_mode, **params['normin'])
        #print imga1.shape

        # -- 2. linear filtering
        filt_l = get_gabor_filters(params['filter'])
        imga2 = v1like_filter(imga1[:,:,0], conv_mode, filt_l)
        #print imga2.shape

        #raise

        # -- 3. simple non-linear activation (clamping)
        minout = params['activ']['minout'] # sustain activity
        maxout = params['activ']['maxout'] # saturation
        imga3 = imga2.clip(minout, maxout)
        #print imga3.shape

        # -- 4. output normalization
        imga4 = v1like_norm(imga3, conv_mode, **params['normout'])
        #print imga4.shape

        # -- 5. sparsify ?
        if "sparsify" in params and params["sparsify"]:
            imga4 = (imga4.max(2)[:,:,None] == imga4)
            #print imga4.shape
            #raise

        # -- 6. volume dimension reduction
        imga5 = v1like_pool(imga4, conv_mode, **params['pool'])
        output = imga5
        #print imga5.shape

        # -- 7. handle features to include
        feat_l = []

        # include input norm histograms ?
        f_normin_hists = featsel['normin_hists']
        if f_normin_hists is not None:
            division, nfeatures = f_norminhists
            feat_l += [rephists(imga1, division, nfeatures)]

        # include filter output histograms ?
        f_filter_hists = featsel['filter_hists']
        if f_filter_hists is not None:
            division, nfeatures = f_filter_hists
            feat_l += [rephists(imga2, division, nfeatures)]

        # include activation output histograms ?
        f_activ_hists = featsel['activ_hists']
        if f_activ_hists is not None:
            division, nfeatures = f_activ_hists
            feat_l += [rephists(imga3, division, nfeatures)]

        # include output norm histograms ?
        f_normout_hists = featsel['normout_hists']
        if f_normout_hists is not None:
            division, nfeatures = f_normout_hists
            feat_l += [rephists(imga4, division, nfeatures)]

        # include representation output histograms ?
        f_pool_hists = featsel['pool_hists']
        if f_pool_hists is not None:
            division, nfeatures = f_pool_hists
            feat_l += [rephists(imga5, division, nfeatures)]

        # include representation output ?
        f_output = featsel['output']
        if f_output and len(feat_l) != 0:
            fvector = sp.concatenate([output.ravel()]+feat_l)
        else:
            fvector = output

        fvector_l += [fvector]

    # --

    # include grayscale values ?
    f_input_gray = featsel['input_gray']
    if f_input_gray is not None:
        shape = f_input_gray
        #print orig_imga.shape
        fvector_l += [sp.misc.imresize(colorconv.gray_convert(orig_imga), shape).ravel()]

    # include color histograms ?
    f_input_colorhists = featsel['input_colorhists']
    if f_input_colorhists is not None:
        nbins = f_input_colorhists
        colorhists = sp.empty((3,nbins), 'f')
        if orig_imga.ndim == 3:
            for d in xrange(3):
                h = sp.histogram(orig_imga[:,:,d].ravel(),
                                 bins=nbins,
                                 range=[0,255])
                binvals = h[0].astype('f')
                colorhists[d] = binvals
        else:
            raise ValueError, "orig_imga.ndim == 3"
            #h = sp.histogram(orig_imga[:,:].ravel(),
            #                 bins=nbins,
            #                 range=[0,255])
            #binvals = h[0].astype('f')
            #colorhists[:] = binvals

        #feat_l += [colorhists.ravel()]
        fvector_l += [colorhists.ravel()]

    # -- done !
    fvector_l = [fvector.ravel() for fvector in fvector_l]
    out = sp.concatenate(fvector_l).ravel()
    return out
def extract_backgrounds(
    input_filenames,    
    # --
    output_dir = DEFAULT_OUTPUT_DIR,
    # --    
    extract_width = DEFAULT_EXTRACT_WIDTH,
    extract_height = DEFAULT_EXTRACT_HEIGHT,
    output_width = DEFAULT_OUTPUT_WIDTH,
    output_height = DEFAULT_OUTPUT_HEIGHT,
    # --
    #rot_range = DEFAULT_ROT_RANGE,
    # --
    nimages = DEFAULT_NIMAGES,
    # color = DEFAULT_COLOR,
    ):

    assert os.path.isdir(output_dir)

    print "Number of input files:", len(input_filenames)
    print "Number of output files:", nimages


    pbar = ProgressBar(widgets=widgets, maxval=nimages)
    pbar.start()
    for n in xrange(nimages):
        # 1. select a random (valid) image 
        done = False
        while not done:
            fname = input_filenames[sp.random.randint(len(input_filenames))]
            arr_in = sp.atleast_3d(imread(fname))
            arr_h, arr_w = shap = arr_in.shape[:2]
            if (sp.array([extract_height, extract_width])*(1.+SIZE_EPSILON)
                <= shap).all():
                done = True
                arr_in = arr_in.mean(2)
                
        # 2. select a random (valid) position
        posx = sp.random.randint(arr_w-extract_width)
        posy = sp.random.randint(arr_h-extract_height)

        # 3. extract the patch
        arr_out = arr_in[posy:posy+extract_height, posx:posx+extract_width]
        assert arr_out.shape == (extract_height, extract_width)

        # 4. resize the image
        arr_out = imresize(arr_out, (output_height, output_width))
        assert arr_out.shape == (output_height, output_width)

        # 5. normalize
        arr_out = arr_out.astype('float32')
        arr_out -= arr_out.mean()
        arr_out_std = arr_out.std()
        assert arr_out_std != 0
        arr_out /= arr_out_std

        # 6. save output
        sha = hashlib.sha1(arr_out.tostring()).hexdigest()
        output_filename = os.path.join(output_dir, "%s.png" % sha)
        imsave(output_filename, arr_out)

        pbar.update(n+1)

    pbar.finish()
Beispiel #28
0
def apply_chords(im, spacing=1, axis=0, trim_edges=True, label=False):
    r"""
    Adds chords to the void space in the specified direction.  The chords are
    separated by 1 voxel plus the provided spacing.

    Parameters
    ----------
    im : ND-array
        An image of the porous material with void marked as ``True``.

    spacing : int
        Separation between chords.  The default is 1 voxel.  This can be
        decreased to 0, meaning that the chords all touch each other, which
        automatically sets to the ``label`` argument to ``True``.

    axis : int (default = 0)
        The axis along which the chords are drawn.

    trim_edges : bool (default = ``True``)
        Whether or not to remove chords that touch the edges of the image.
        These chords are artifically shortened, so skew the chord length
        distribution.

    label : bool (default is ``False``)
        If ``True`` the chords in the returned image are each given a unique
        label, such that all voxels lying on the same chord have the same
        value.  This is automatically set to ``True`` if spacing is 0, but is
        ``False`` otherwise.

    Returns
    -------
    image : ND-array
        A copy of ``im`` with non-zero values indicating the chords.

    See Also
    --------
    apply_chords_3D

    """
    if spacing < 0:
        raise Exception('Spacing cannot be less than 0')
    if spacing == 0:
        label = True
    result = sp.zeros(im.shape, dtype=int)  # Will receive chords at end
    slxyz = [slice(None, None, spacing * (axis != i) + 1) for i in [0, 1, 2]]
    slices = tuple(slxyz[:im.ndim])
    s = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]  # Straight-line structuring element
    if im.ndim == 3:  # Make structuring element 3D if necessary
        s = sp.pad(sp.atleast_3d(s),
                   pad_width=((0, 0), (0, 0), (1, 1)),
                   mode='constant',
                   constant_values=0)
    im = im[slices]
    s = sp.swapaxes(s, 0, axis)
    chords = spim.label(im, structure=s)[0]
    if trim_edges:  # Label on border chords will be set to 0
        chords = clear_border(chords)
    result[slices] = chords  # Place chords into empty image created at top
    if label is False:  # Remove label if not requested
        result = result > 0
    return result
Beispiel #29
0
 def __init__(self, image):
     super().__init__()
     image = sp.atleast_3d(image)
     self.image = sp.array(image, dtype=bool)
Beispiel #30
0
 def __init__(self, image):
     super().__init__()
     image = sp.atleast_3d(image)
     self.image = sp.array(image, dtype=bool)