Beispiel #1
0
    #we record the search trip to plot it later..
    searchTripGraph[alpha] = delta_I
    return delta_I
    
#Only needed to plot the loss function (with the found minumum)
def plotDifferentRouteFuction(graphAsDict, alpha_min, f_alpha_min):
  #we must sort the dict since the search trip was a hopping one..
  finderFunctionGraph = collections.OrderedDict(sorted(graphAsDict.items()))
  pl.plot(finderFunctionGraph.keys(), finderFunctionGraph.values(), label = 'Route 1 - Route 2' );
  pl.plot(alpha_min, f_alpha_min, 'o', color='red')
  pl.show()
    

if __name__ == '__main__':
  
  solver = ScipyAndersonOZsolver(port = 0)
  #solver = ScipyNewtonKrylovOZsolver(port = 0)
  #We only work with LJ or Yukawa potential since we want to avoid the trouble
  #related to the 'jump' (discontinuity) at r = sigma
  
  doLennardJonesExample = False
  
  if doLennardJonesExample:
      #LJ possible but with HMSA
      solver.setPotentialByName('LennardJones', 0.1) #epsilon/kT = 0.1 is default in SASfit
      print "Energy scale of Lennard Jones Potential in kT units:", solver.getEpsilonInkTUnits()
      #Initialize HMSA with some (random) start alpha
      solver.doHMSAclosure(1.0)
  
  else:
      #Yukawa possible with RY: With negative K (attractive besides HS) convergence may be reached for exp shift only (real HS-Yukawa)
Beispiel #2
0
from picardOZsolver import PicardOZsolver
from andersonOZsolver import AndersonOZsolver
from scipyAndersonOZsolver import ScipyAndersonOZsolver
from scipyNewtonKrylovOZsolver import ScipyNewtonKrylovOZsolver

if __name__ == '__main__':

    #Dict to contain the various algorithms (classes)
    solverClassDictionary = {}
    #Dict to contain the various results (algorithm specific)
    algorithmSqDictionary = {}

    #Instantiate solver classes (port=0 means no server)
    solverClassDictionary['Picard'] = PicardOZsolver(port=0)
    solverClassDictionary['Anderson'] = AndersonOZsolver(port=0)
    solverClassDictionary['scipyAnderson'] = ScipyAndersonOZsolver(port=0)
    solverClassDictionary['scipyNewtonKrylov'] = ScipyNewtonKrylovOZsolver(
        port=0)

    #Basic params, use HardSphere together with analytical Solution (and PY, but this is default)
    density = 0.3
    potential = 'HardSphere'

    #Start loop over classes (calculate S(q) with all algorithms)
    for algorithmKey in solverClassDictionary:
        #Activate the next line to use a different FPO, here the investment in design pays off,
        #since the fixpoint operator can easily be exchanged without further modifications
        #solverClassDictionary[algorithmKey].doNotUseGammaFixPointOperator()
        solverClassDictionary[algorithmKey].setPotentialByName(potential)
        solverClassDictionary[algorithmKey].setVolumeDensity(density)
        solverClassDictionary[algorithmKey].solve()
Beispiel #3
0
initial search direction is correct. Experiments show
that a zero start value may be better than the previous.
'''
import numpy as np

#Solver
from scipyAndersonOZsolver import ScipyAndersonOZsolver

#plot
import matplotlib.pyplot as plt
import pylab as pl

if __name__ == '__main__':
  

  solver = ScipyAndersonOZsolver(port = 0)
  solver.setPotentialByName('HardSphere')
  #solver.setNumberOfIterations(10*solver.getNumberOfIterations())
  #Relaxing ConvergenceCriterion by a factor 1000
  solver.setConvergenceCriterion(1.0e3*solver.getConvergenceCriterion())
  #solver.setPotentialByName('LennardJones', 0.5)

  startDensity = 0.58
  targetDensity = 0.63
  totalDeltaDensity = targetDensity - startDensity
  
  density = startDensity
  deltaDensity = totalDeltaDensity
  
  decayFactor = 2.5
  deltaDensity = 0.01
Beispiel #4
0
    #Plot results
    r = solver.getrArray()
    for potentialType in boltzmannOfPotentialDictionary:
        pl.plot(r,
                boltzmannOfPotentialDictionary[potentialType],
                label='exp(-beta*' + str(potentialType) + ')')
        pl.xlabel('r/sigma')
        pl.ylabel('exp(-beta*u)')
        pl.legend(loc='upper right')

    pl.show()

    #We  just repeat everything from above with a density > 0 to get a RDF fifferent from the Boltzmann of mutual potential
    density = 0.3
    #We switch to ScipyAndersonOZsolver since it can better handle Star potential (?)
    solver = ScipyAndersonOZsolver(port=0)
    solver.setVolumeDensity(density)
    for potentialType in listOfPotentials:
        solver.setPotentialByName(*(potentialType.split('_')))
        solver.solve()
        g = solver.getRDF()
        RDFdictionary[potentialType] = g

    #Plot results
    r = solver.getrArray()
    for potentialType in RDFdictionary:
        pl.plot(r,
                RDFdictionary[potentialType],
                label='RDF with' + str(potentialType))
        pl.xlabel('r/sigma')
        pl.ylabel('g')
Beispiel #5
0
#performance measurement
import time

#Solver
from picardOZsolver import PicardOZsolver
from andersonOZsolver import AndersonOZsolver
from scipyAndersonOZsolver import ScipyAndersonOZsolver
from scipyNewtonKrylovOZsolver import ScipyNewtonKrylovOZsolver

if __name__ == '__main__':
  
  #Instantiate solver class (Picard iteration, etc.)
  #For star potential, ScipyAndersonOZsolver gives best result
  #s = PicardOZsolver(port = 0)
  #s = AndersonOZsolver(port = 0)
  s = ScipyAndersonOZsolver(port = 0)
  #s = ScipyNewtonKrylovOZsolver(port = 0)
  s.printPotentialSetterArguments()
  #s.setPotentialByName('HardSphere')
  #s.setPotentialByName('LennardJones', 0.2)
  s.setPotentialByName('Star', 20)
  
  #Define the density range to scan
  densityRange = np.arange(0.3, 0.4, 0.1)
  #densityRange = np.asarray([0.3])
  #densityRange = np.asarray([0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5])
  

  densityRDFdictionary = {}
  
  #Start loop over densities and measure wall clock time
Beispiel #6
0
   
    options, args = parser.parse_args()
    return options, args


#Start here
#*******************************************************************************************************************************************************************
if __name__ == '__main__':
  options, args = readOptions()
  portNumber = int(options.portNumber)
  typeOfIteration = options.typeOfIteration
  
  if typeOfIteration == 'Picard':
    PicardOZsolver(portNumber)
    
  elif typeOfIteration == 'Anderson':
    AndersonOZsolver(portNumber)
    
  elif typeOfIteration == 'ScipyAnderson':
    ScipyAndersonOZsolver(portNumber)
    
  elif typeOfIteration == 'ScipyNewtonKrylov':
    ScipyNewtonKrylovOZsolver(portNumber)
    
  else:
    print "Unknown iteration schema, exiting"
    sys.exit()
    
  
  
Beispiel #7
0
For alpha -> 0, PYC is recovered, 
for alpha -> inf, HNC closure is recovered
'''

import numpy as np
from scipyAndersonOZsolver import ScipyAndersonOZsolver

#plot
import matplotlib.pyplot as plt
import pylab as pl

if __name__ == '__main__':

    closureRDFdictionary = {}

    solver = ScipyAndersonOZsolver(port=0)
    solver.setPotentialByName('HardSphere')
    solver.setVolumeDensity(0.4)

    #Default is PY
    print "PY closure.."
    solver.solve()
    closureRDFdictionary['PY'] = solver.getRDF()

    print "HNC closure.."
    solver.doHNCclosure()
    solver.solve()
    closureRDFdictionary['HNC'] = solver.getRDF()

    print "RY closure, alpha -> 0.."
    solver.doRYclosure(alpha=0.0001)  #Not exactly zero...
Beispiel #8
0
(as expressed in (2) ) does not hold
strictly (only on average).
So far for the naming)
The script calculates the OZ solution
of the HS + PY system with and without
the S_c(0) result.
'''
import numpy as np
from scipyAndersonOZsolver import ScipyAndersonOZsolver


#plot
import matplotlib.pyplot as plt

if __name__ == '__main__':
  solver = ScipyAndersonOZsolver(port = 0)
  solver.setPotentialByName('HardSphere')
  volumeDensity = 0.5
  solver.setVolumeDensity(volumeDensity)
  solver.setConvergenceCriterion(1.0e-4*solver.getConvergenceCriterion())
  #PY is default, so no explicit settings are needed in this regard
  #so solver is in desired state.
  solver.solve()
  #Get reference structure factor
  Sq_default = solver.getSq()
  #now GCE limit version
  solver.doEnforceGrandCanonicalZeroQlimit()
  #solver is in desired state.
  solver.solve()
  #Get GCE structure factor
  Sq_GCE = solver.getSq()
Beispiel #9
0
and hence particle conservation
(as expressed in (2) ) does not hold
strictly (only on average).
So far for the naming)
The script calculates the OZ solution
of the HS + PY system with and without
the S_c(0) result.
'''
import numpy as np
from scipyAndersonOZsolver import ScipyAndersonOZsolver

#plot
import matplotlib.pyplot as plt

if __name__ == '__main__':
    solver = ScipyAndersonOZsolver(port=0)
    solver.setPotentialByName('HardSphere')
    volumeDensity = 0.5
    solver.setVolumeDensity(volumeDensity)
    solver.setConvergenceCriterion(1.0e-4 * solver.getConvergenceCriterion())
    #PY is default, so no explicit settings are needed in this regard
    #so solver is in desired state.
    solver.solve()
    #Get reference structure factor
    Sq_default = solver.getSq()
    #now GCE limit version
    solver.doEnforceGrandCanonicalZeroQlimit()
    #solver is in desired state.
    solver.solve()
    #Get GCE structure factor
    Sq_GCE = solver.getSq()
Beispiel #10
0
For alpha -> 0, PYC is recovered, 
for alpha -> inf, HNC closure is recovered
'''

import numpy as np
from scipyAndersonOZsolver import ScipyAndersonOZsolver

#plot
import matplotlib.pyplot as plt
import pylab as pl

if __name__ == '__main__':
  
  closureRDFdictionary = {}

  solver = ScipyAndersonOZsolver(port = 0)
  solver.setPotentialByName('HardSphere')
  solver.setVolumeDensity(0.4)
  
  #Default is PY
  print "PY closure.."
  solver.solve()
  closureRDFdictionary['PY'] = solver.getRDF()
  
  print "HNC closure.."
  solver.doHNCclosure()
  solver.solve()
  closureRDFdictionary['HNC'] = solver.getRDF()
  
  print "RY closure, alpha -> 0.."
  solver.doRYclosure(alpha=0.0001) #Not exactly zero...
Beispiel #11
0

#Only needed to plot the loss function (with the found minumum)
def plotDifferentRouteFuction(graphAsDict, alpha_min, f_alpha_min):
    #we must sort the dict since the search trip was a hopping one..
    finderFunctionGraph = collections.OrderedDict(sorted(graphAsDict.items()))
    pl.plot(finderFunctionGraph.keys(),
            finderFunctionGraph.values(),
            label='Route 1 - Route 2')
    pl.plot(alpha_min, f_alpha_min, 'o', color='red')
    pl.show()


if __name__ == '__main__':

    solver = ScipyAndersonOZsolver(port=0)
    #solver = ScipyNewtonKrylovOZsolver(port = 0)
    #We only work with LJ or Yukawa potential since we want to avoid the trouble
    #related to the 'jump' (discontinuity) at r = sigma

    doLennardJonesExample = False

    if doLennardJonesExample:
        #LJ possible but with HMSA
        solver.setPotentialByName('LennardJones',
                                  0.1)  #epsilon/kT = 0.1 is default in SASfit
        print "Energy scale of Lennard Jones Potential in kT units:", solver.getEpsilonInkTUnits(
        )
        #Initialize HMSA with some (random) start alpha
        solver.doHMSAclosure(1.0)