Beispiel #1
0
    def validate_pars(self):
        ''' Some parameters can take multiple types; this makes them consistent '''

        # Handle start day
        start_day = self['start_day'] # Shorten
        if start_day in [None, 0]: # Use default start day
            start_day = dt.date(2020, 1, 1)
        elif sc.isstring(start_day):
            start_day = sc.readdate(start_day)
        if isinstance(start_day,dt.datetime):
            start_day = start_day.date()
        self['start_day'] = start_day

        # Handle contacts
        contacts = self['contacts']
        if sc.isnumber(contacts): # It's a scalar instead of a dict, assume it's all contacts
            self['contacts']    = {'a':contacts}
            self['beta_layers'] = {'a':1.0}

        # Handle population data
        popdata_choices = ['random', 'microstructure', 'synthpops']
        if sc.isnumber(self['pop_type']) or isinstance(self['pop_type'], bool): # Convert e.g. pop_type=1 to 'microstructure'
            self['pop_type'] = popdata_choices[int(self['pop_type'])] # Choose one of these
        if self['pop_type'] not in popdata_choices:
            choice = self['pop_type']
            choicestr = ', '.join(popdata_choices)
            errormsg = f'Population type "{choice}" not available; choices are: {choicestr}'
            raise ValueError(errormsg)

        # Handle interventions
        self['interventions'] = sc.promotetolist(self['interventions'], keepnone=False)

        return
Beispiel #2
0
def day(obj, *args, start_day=None):
    '''
    Convert a string, date/datetime object, or int to a day (int), the number of
    days since the start day. See also date() and daydiff(). Used primarily via
    sim.day() rather than directly.

    Args:
        obj (str, date, int, or list): convert any of these objects to a day relative to the start day
        args (list): additional days
        start_day (str or date): the start day; if none is supplied, return days since 2020-01-01.

    Returns:
        days (int or str): the day(s) in simulation time

    **Example**::

        sim.day('2020-04-05') # Returns 35
    '''

    # Do not process a day if it's not supplied
    if obj is None:
        return None
    if start_day is None:
        start_day = '2020-01-01'

    # Convert to list
    if sc.isstring(obj) or sc.isnumber(obj) or isinstance(
            obj, (dt.date, dt.datetime)):
        obj = sc.promotetolist(obj)  # Ensure it's iterable
    elif isinstance(obj, np.ndarray):
        obj = obj.tolist()  # Convert to list if it's an array
    obj.extend(args)

    days = []
    for d in obj:
        if d is None:
            days.append(d)
        elif sc.isnumber(d):
            days.append(int(d))  # Just convert to an integer
        else:
            try:
                if sc.isstring(d):
                    d = sc.readdate(d).date()
                elif isinstance(d, dt.datetime):
                    d = d.date()
                d_day = (d - date(start_day)
                         ).days  # Heavy lifting -- actually compute the day
                days.append(d_day)
            except Exception as E:
                errormsg = f'Could not interpret "{d}" as a date: {str(E)}'
                raise ValueError(errormsg)

    # Return an integer rather than a list if only one provided
    if len(days) == 1:
        days = days[0]

    return days
Beispiel #3
0
 def initialize(self, sim):
     ''' Fix the dates and dictionaries '''
     self.start_day = sim.day(self.start_day)
     self.end_day   = sim.day(self.end_day)
     self.days      = [self.start_day, self.end_day]
     if sc.isnumber(self.trace_probs):
         val = self.trace_probs
         self.trace_probs = {k:val for k in sim.people.layer_keys()}
     if sc.isnumber(self.trace_time):
         val = self.trace_time
         self.trace_time = {k:val for k in sim.people.layer_keys()}
     return
Beispiel #4
0
    def date(self, ind, *args, dateformat=None):
        '''
        Convert an integer or list of integer simulation days to a date/list of dates.

        Args:
            ind (int, list, or array): the day(s) in simulation time

        Returns:
            dates (str or list): the date relative to the simulation start day, as an integer

        **Example**::

            sim.date(35) # Returns '2020-04-05'
        '''

        if sc.isnumber(ind):  # If it's a number, convert it to a list
            ind = sc.promotetolist(ind)
        ind.extend(args)

        if dateformat is None:
            dateformat = '%Y-%m-%d'

        dates = []
        for i in ind:
            tmp = self['start_day'] + dt.timedelta(days=int(i))
            dates.append(tmp.strftime(dateformat))

        # Return a string rather than a list if only one provided
        if len(ind) == 1:
            dates = dates[0]

        return dates
def get_quar_inds(quar_policy, sim):
    '''
    Helper function to return the appropriate indices for people in quarantine
    based on the current quarantine testing "policy". Used by test_num and test_prob.
    Not for use by the user.

    If quar_policy is a number or a list of numbers, then it is interpreted as
    the number of days after the start of quarantine when a test is performed.
    It can also be a function that returns the list of indices.

    Args:
        quar_policy (str, int, list, func): 'start', people entering quarantine; 'end', people leaving; 'both', entering and leaving; 'daily', every day in quarantine
        sim (Sim): the simulation object
    '''
    t = sim.t
    if   quar_policy is None:    quar_test_inds = np.array([])
    elif quar_policy == 'start': quar_test_inds = cvu.true(sim.people.date_quarantined==t-1) # Actually do the day after since testing usually happens before contact tracing
    elif quar_policy == 'end':   quar_test_inds = cvu.true(sim.people.date_end_quarantine==t+1) # +1 since they are released on date_end_quarantine, so do the day before
    elif quar_policy == 'both':  quar_test_inds = np.concatenate([cvu.true(sim.people.date_quarantined==t-1), cvu.true(sim.people.date_end_quarantine==t+1)])
    elif quar_policy == 'daily': quar_test_inds = cvu.true(sim.people.quarantined)
    elif sc.isnumber(quar_policy) or (sc.isiterable(quar_policy) and not sc.isstring(quar_policy)):
        quar_policy = sc.promotetoarray(quar_policy)
        quar_test_inds = np.unique(np.concatenate([cvu.true(sim.people.date_quarantined==t-1-q) for q in quar_policy]))
    elif callable(quar_policy):
        quar_test_inds = quar_policy(sim)
    else:
        errormsg = f'Quarantine policy "{quar_policy}" not recognized: must be a string (start, end, both, daily), int, list, array, set, tuple, or function'
        raise ValueError(errormsg)
    return quar_test_inds
Beispiel #6
0
    def validate_layer_pars(self):
        '''
        Handle layer parameters, since they need to be validated after the population
        creation, rather than before.
        '''

        # First, try to figure out what the layer keys should be and perform basic type checking
        layer_keys = self.layer_keys()
        layer_pars = cvpar.layer_pars  # The names of the parameters that are specified by layer
        for lp in layer_pars:
            val = self[lp]
            if sc.isnumber(
                    val
            ):  # It's a scalar instead of a dict, assume it's all contacts
                self[lp] = {k: val for k in layer_keys}

        # Handle key mismaches
        for lp in layer_pars:
            lp_keys = set(self.pars[lp].keys())
            if not lp_keys == set(layer_keys):
                errormsg = f'Layer parameters have inconsistent keys with the layer keys {layer_keys}:'
                for lp2 in layer_pars:  # Fail on first error, but re-loop to list all of them
                    errormsg += f'\n{lp2} = ' + ', '.join(self.pars[lp].keys())
                raise sc.KeyNotFoundError(errormsg)

        # Handle mismatches with the population
        if self.people is not None:
            pop_keys = set(self.people.contacts.keys())
            if pop_keys != set(layer_keys):
                errormsg = f'Please update your parameter keys {layer_keys} to match population keys {pop_keys}. You may find sim.reset_layer_pars() helpful.'
                raise sc.KeyNotFoundError(errormsg)

        return
Beispiel #7
0
    def validate_pars(self):
        ''' Some parameters can take multiple types; this makes them consistent '''

        # Handle start day
        start_day = self['start_day']  # Shorten
        if start_day in [None, 0]:  # Use default start day
            start_day = dt.datetime(2020, 1, 1)
        if not isinstance(start_day, dt.datetime):
            start_day = sc.readdate(start_day)
        self['start_day'] = start_day  # Convert back

        # Handle population data
        popdata_choices = ['random', 'bayesian', 'data']
        if sc.isnumber(self['usepopdata']) or isinstance(
                self['usepopdata'],
                bool):  # Convert e.g. usepopdata=1 to 'bayesian'
            self['usepopdata'] = popdata_choices[int(
                self['usepopdata'])]  # Choose one of these
        if self['usepopdata'] not in popdata_choices:
            choice = self['usepopdata']
            choicestr = ', '.join(popdata_choices)
            errormsg = f'Population data option "{choice}" not available; choices are: {choicestr}'
            raise ValueError(errormsg)

        # Handle interventions
        self['interventions'] = sc.promotetolist(self['interventions'],
                                                 keepnone=False)

        return
Beispiel #8
0
    def day(self, day, *args):
        '''
        Convert a string, date/datetime object, or int to a day (int).

        Args:
            day (str, date, int, or list): convert any of these objects to a day relative to the simulation's start day

        Returns:
            days (int or str): the day(s) in simulation time

        **Example**::

            sim.day('2020-04-05') # Returns 35
        '''
        # Do not process a day if it's not supplied
        if day is None:
            return None

        # Convert to list
        if sc.isstring(day) or sc.isnumber(day) or isinstance(
                day, (dt.date, dt.datetime)):
            day = sc.promotetolist(day)  # Ensure it's iterable
        day.extend(args)

        days = []
        for d in day:
            if sc.isnumber(d):
                days.append(int(d))  # Just convert to an integer
            else:
                try:
                    if sc.isstring(d):
                        d = sc.readdate(d).date()
                    elif isinstance(d, dt.datetime):
                        d = d.date()
                    d_day = (d - self['start_day']).days
                    days.append(d_day)
                except Exception as E:
                    errormsg = f'Could not interpret "{d}" as a date: {str(E)}'
                    raise ValueError(errormsg)

        # Return an integer rather than a list if only one provided
        if len(days) == 1:
            days = days[0]

        return days
 def initialize(self, sim):
     ''' Fix the dates and dictionaries '''
     self.start_day = sim.day(self.start_day)
     self.end_day   = sim.day(self.end_day)
     self.days      = [self.start_day, self.end_day]
     if self.trace_probs is None:
         self.trace_probs = 1.0
     if self.trace_time is None:
         self.trace_time = 0.0
     if self.quar_period is None:
         self.quar_period = sim.pars['quar_period']
     if sc.isnumber(self.trace_probs):
         val = self.trace_probs
         self.trace_probs = {k:val for k in sim.people.layer_keys()}
     if sc.isnumber(self.trace_time):
         val = self.trace_time
         self.trace_time = {k:val for k in sim.people.layer_keys()}
     self.initialized = True
     return
Beispiel #10
0
    def date(self, ind, *args, dateformat=None, as_date=False):
        '''
        Convert one or more integer days of simulation time to a date/list of dates --
        by default returns a string, or returns a datetime Date object if as_date is True.
        See also cv.date(), which provides a partly overlapping set of date conversion
        features.

        Args:
            ind (int, list, or array): the index day(s) in simulation time (NB: strings and date objects are accepted, and will be passed unchanged)
            args (list): additional day(s)
            dateformat (str): the format to return the date in
            as_date (bool): whether to return as a datetime date instead of a string

        Returns:
            dates (str, Date, or list): the date(s) corresponding to the simulation day(s)

        **Examples**::

            sim = cv.Sim()
            sim.date(34) # Returns '2020-04-04'
            sim.date([34, 54]) # Returns ['2020-04-04', '2020-04-24']
            sim.date([34, '2020-04-24']) # Returns ['2020-04-04', '2020-04-24']
            sim.date(34, 54, as_date=True) # Returns [datetime.date(2020, 4, 4), datetime.date(2020, 4, 24)]
        '''

        # Handle inputs
        if not isinstance(
                ind, list
        ):  # If it's a number, string, or dateobj, convert it to a list
            ind = sc.promotetolist(ind)
        ind.extend(args)
        if dateformat is None:
            dateformat = '%Y-%m-%d'

        # Do the conversion
        dates = []
        for raw in ind:
            if sc.isnumber(raw):
                date_obj = cvm.date(self['start_day'],
                                    as_date=True) + dt.timedelta(days=int(raw))
            else:
                date_obj = cvm.date(raw, as_date=True)
            if as_date:
                dates.append(date_obj)
            else:
                dates.append(date_obj.strftime(dateformat))

        # Return a string rather than a list if only one provided
        if len(ind) == 1:
            dates = dates[0]

        return dates
Beispiel #11
0
    def validate_pars(self):
        ''' Some parameters can take multiple types; this makes them consistent '''

        # Handle types
        for key in ['pop_size', 'pop_infected', 'pop_size', 'n_days']:
            self[key] = int(self[key])

        # Handle start day
        start_day = self['start_day']  # Shorten
        if start_day in [None, 0]:  # Use default start day
            start_day = '2020-03-01'
        self['start_day'] = cvm.date(start_day)

        # Handle contacts
        contacts = self['contacts']
        if sc.isnumber(
                contacts
        ):  # It's a scalar instead of a dict, assume it's all contacts
            self['contacts'] = {'a': contacts}

        # Handle key mismaches
        beta_layer_keys = set(self.pars['beta_layer'].keys())
        contacts_keys = set(self.pars['contacts'].keys())
        quar_eff_keys = set(self.pars['quar_eff'].keys())
        if not (beta_layer_keys == contacts_keys == quar_eff_keys):
            errormsg = f'Layer parameters beta={beta_layer_keys}, contacts={contacts_keys}, quar_eff={quar_eff_keys} have inconsistent keys'
            raise sc.KeyNotFoundError(errormsg)
        if self.people is not None:
            pop_keys = set(self.people.contacts.keys())
            if pop_keys != beta_layer_keys:
                errormsg = f'Please update your parameter keys {beta_layer_keys} to match population keys {pop_keys}. You may find sim.reset_layer_pars() helpful.'
                raise sc.KeyNotFoundError(errormsg)

        # Handle population data
        popdata_choices = ['random', 'hybrid', 'clustered', 'synthpops']
        choice = self['pop_type']
        if choice not in popdata_choices:
            choicestr = ', '.join(popdata_choices)
            errormsg = f'Population type "{choice}" not available; choices are: {choicestr}'
            raise sc.KeyNotFoundError(errormsg)

        # Handle interventions
        self['interventions'] = sc.promotetolist(self['interventions'],
                                                 keepnone=False)
        for i, interv in enumerate(self['interventions']):
            if isinstance(
                    interv, dict
            ):  # It's a dictionary representation of an intervention
                self['interventions'][i] = cvi.InterventionDict(**interv)

        return
Beispiel #12
0
    def __init__(self, pars, **kwargs):

        # Handle pars and population size
        if sc.isnumber(pars):  # Interpret as a population size
            pars = {'pop_size': pars}  # Ensure it's a dictionary
        self.pars = pars  # Equivalent to self.set_pars(pars)
        self.pop_size = int(pars['pop_size'])

        # Other initialization
        self.t = 0  # Keep current simulation time
        self._lock = False  # Prevent further modification of keys
        self.meta = cvd.PeopleMeta()  # Store list of keys and dtypes
        self.contacts = None
        self.init_contacts()  # Initialize the contacts
        self.infection_log = [
        ]  # Record of infections - keys for ['source','target','date','layer']

        # Set person properties -- all floats except for UID
        for key in self.meta.person:
            if key == 'uid':
                self[key] = np.arange(self.pop_size, dtype=cvd.default_int)
            else:
                self[key] = np.full(self.pop_size,
                                    np.nan,
                                    dtype=cvd.default_float)

        # Set health states -- only susceptible is true by default -- booleans
        for key in self.meta.states:
            if key == 'susceptible':
                self[key] = np.full(self.pop_size, True, dtype=bool)
            else:
                self[key] = np.full(self.pop_size, False, dtype=bool)

        # Set dates and durations -- both floats
        for key in self.meta.dates + self.meta.durs:
            self[key] = np.full(self.pop_size, np.nan, dtype=cvd.default_float)

        # Store the dtypes used in a flat dict
        self._dtypes = {key: self[key].dtype
                        for key in self.keys()
                        }  # Assign all to float by default
        self._lock = True  # Stop further keys from being set (does not affect attributes)

        # Store flows to be computed during simulation
        self.flows = {key: 0 for key in cvd.new_result_flows}

        # Although we have called init(), we still need to call initialize()
        self.initialized = False

        return
Beispiel #13
0
    def inds2dates(self, inds, dateformat=None):
        ''' Convert a set of indices to a set of dates '''

        if sc.isnumber(inds):  # If it's a number, convert it to a list
            inds = sc.promotetolist(inds)

        if dateformat is None:
            dateformat = '%b-%d'

        dates = []
        for ind in inds:
            tmp = self['start_day'] + dt.timedelta(days=int(ind))
            dates.append(tmp.strftime(dateformat))
        return dates
Beispiel #14
0
 def __init__(self, pars):
     super().__init__()
     subkeys = ['days', 'vals']
     for parkey in pars.keys():
         for subkey in subkeys:
             if subkey not in pars[parkey].keys():
                 errormsg = f'Parameter {parkey} is missing subkey {subkey}'
                 raise cvm.KeyNotFoundError(errormsg)
             if sc.isnumber(pars[parkey][subkey]): # Allow scalar values or dicts, but leave everything else unchanged
                 pars[parkey][subkey] = sc.promotetoarray(pars[parkey][subkey])
         len_days = len(pars[parkey]['days'])
         len_vals = len(pars[parkey]['vals'])
         if len_days != len_vals:
             raise ValueError(f'Length of days ({len_days}) does not match length of values ({len_vals}) for parameter {parkey}')
     self.pars = pars
     return
Beispiel #15
0
def date(obj, *args, **kwargs):
    '''
    Convert a string or a datetime object to a date object. To convert to an integer
    from the start day, use sim.date() instead.

    Args:
        obj (str, date, datetime): the object to convert
        args (str, date, datetime): additional objects to convert

    Returns:
        dates (date or list): either a single date object, or a list of them

    **Examples**::

        cv.date('2020-04-05') # Returns datetime.date(2020, 4, 5)
    '''
    # Convert to list
    if sc.isstring(obj) or sc.isnumber(obj) or isinstance(
            obj, (dt.date, dt.datetime)):
        obj = sc.promotetolist(obj)  # Ensure it's iterable
    obj.extend(args)

    dates = []
    for d in obj:
        try:
            if type(
                    d
            ) == dt.date:  # Do not use isinstance, since must be the exact type
                pass
            elif sc.isstring(d):
                d = sc.readdate(d).date()
            elif isinstance(d, dt.datetime):
                d = d.date()
            else:
                errormsg = f'Could not interpret "{d}" of type {type(d)} as a date'
                raise TypeError(errormsg)
            dates.append(d)
        except Exception as E:
            errormsg = f'Conversion of "{d}" to a date failed: {str(E)}'
            raise ValueError(errormsg)

    # Return an integer rather than a list if only one provided
    if len(dates) == 1:
        dates = dates[0]

    return dates
 def __init__(self, pars, **kwargs):
     super().__init__(**kwargs) # Initialize the Intervention object
     self._store_args() # Store the input arguments so the intervention can be recreated
     subkeys = ['days', 'vals']
     for parkey in pars.keys():
         for subkey in subkeys:
             if subkey not in pars[parkey].keys():
                 errormsg = f'Parameter {parkey} is missing subkey {subkey}'
                 raise sc.KeyNotFoundError(errormsg)
             if sc.isnumber(pars[parkey][subkey]): # Allow scalar values or dicts, but leave everything else unchanged
                 pars[parkey][subkey] = sc.promotetoarray(pars[parkey][subkey])
         len_days = len(pars[parkey]['days'])
         len_vals = len(pars[parkey]['vals'])
         if len_days != len_vals:
             raise ValueError(f'Length of days ({len_days}) does not match length of values ({len_vals}) for parameter {parkey}')
     self.pars = pars
     return
Beispiel #17
0
    def validate_pars(self):
        ''' Some parameters can take multiple types; this makes them consistent '''

        # Handle start day
        start_day = self['start_day']  # Shorten
        if start_day in [None, 0]:  # Use default start day
            start_day = dt.date(2020, 1, 1)
        elif sc.isstring(start_day):
            start_day = sc.readdate(start_day)
        if isinstance(start_day, dt.datetime):
            start_day = start_day.date()
        self['start_day'] = start_day

        # Handle contacts
        contacts = self['contacts']
        if sc.isnumber(
                contacts
        ):  # It's a scalar instead of a dict, assume it's all contacts
            self['contacts'] = {'a': contacts}

        # Handle key mismaches
        beta_layer_keys = set(self.pars['beta_layer'].keys())
        contacts_keys = set(self.pars['contacts'].keys())
        quar_eff_keys = set(self.pars['quar_eff'].keys())
        if not (beta_layer_keys == contacts_keys == quar_eff_keys):
            errormsg = f'Layer parameters beta={beta_layer_keys}, contacts={contacts_keys}, quar_eff={quar_eff_keys} have inconsistent keys'
            raise cvm.KeyNotFoundError(errormsg)
        if self.people is not None:
            pop_keys = set(self.people.contacts.keys())
            if pop_keys != beta_layer_keys:
                errormsg = f'Please update your parameter keys {beta_layer_keys} to match population keys {pop_keys}. You may find sim.reset_layer_pars() helpful.'
                raise cvm.KeyNotFoundError(errormsg)

        # Handle population data
        popdata_choices = ['random', 'hybrid', 'clustered', 'synthpops']
        choice = self['pop_type']
        if choice not in popdata_choices:
            choicestr = ', '.join(popdata_choices)
            errormsg = f'Population type "{choice}" not available; choices are: {choicestr}'
            raise cvm.KeyNotFoundError(errormsg)

        # Handle interventions
        self['interventions'] = sc.promotetolist(self['interventions'],
                                                 keepnone=False)

        return
Beispiel #18
0
    def initialize(self, sim):
        ''' Fix the dates and number of tests '''

        # Process daily tests -- has to be here rather than init so have access to the sim object
        if sc.isnumber(self.daily_tests): # If a number, convert to an array
            self.daily_tests = np.array([int(self.daily_tests)]*sim.npts)
        elif isinstance(self.daily_tests, (pd.Series, pd.DataFrame)):
            start_date = sim['start_day'] + dt.timedelta(days=self.start_day)
            end_date = self.daily_tests.index[-1]
            dateindex = pd.date_range(start_date, end_date)
            self.daily_tests = self.daily_tests.reindex(dateindex, fill_value=0).to_numpy()

        # Handle days
        self.start_day   = sim.day(self.start_day)
        self.end_day     = sim.day(self.end_day)
        self.days        = [self.start_day, self.end_day]
        self.initialized = True

        return
 def set_pars(self, pars=None):
     '''
     Re-link the parameters stored in the people object to the sim containing it,
     and perform some basic validation.
     '''
     if pars is None:
         pars = {}
     elif sc.isnumber(pars):  # Interpret as a population size
         pars = {'pop_size': pars}  # Ensure it's a dictionary
     orig_pars = self.__dict__.get(
         'pars')  # Get the current parameters using dict's get method
     pars = sc.mergedicts(orig_pars, pars)
     if 'pop_size' not in pars:
         errormsg = f'The parameter "pop_size" must be included in a population; keys supplied were:\n{sc.newlinejoin(pars.keys())}'
         raise sc.KeyNotFoundError(errormsg)
     pars['pop_size'] = int(pars['pop_size'])
     pars.setdefault('location', None)
     self.pars = pars  # Actually store the pars
     return
Beispiel #20
0
    def __init__(self, url=None, redisargs=None, *args, **kwargs):

        # Handle arguments to Redis (or lack thereof)
        if redisargs is None:
            redisargs = {}

        # Handle the Redis URL
        default_url = 'redis://127.0.0.1:6379/'  # The default URL for the Redis database
        if not url: url = default_url + '0'  # e.g. sw.DataStore()
        elif sc.isnumber(url):
            url = default_url + '%i' % url  # e.g. sw.DataStore(3)
        self.url = url
        self.redis = redis.StrictRedis.from_url(self.url, **redisargs)

        # Finish construction
        if six.PY2:
            super(RedisDataStore, self).__init__(*args, **kwargs)
        else:
            super().__init__(*args, **kwargs)
        return None
Beispiel #21
0
    def date(self, ind, *args, dateformat=None, as_date=False):
        '''
        Convert one or more integer days of simulation time to a date/list of dates --
        by default returns a string, or returns a datetime Date object if as_date is True.

        Args:
            ind (int, list, or array): the day(s) in simulation time
            as_date (bool): whether to return as a datetime date instead of a string

        Returns:
            dates (str, Date, or list): the date(s) corresponding to the simulation day(s)

        **Examples**::

            sim.date(34) # Returns '2020-04-04'
            sim.date([34, 54]) # Returns ['2020-04-04', '2020-04-24']
            sim.date(34, 54, as_dt=True) # Returns [datetime.date(2020, 4, 4), datetime.date(2020, 4, 24)]
        '''

        # Handle inputs
        if sc.isnumber(ind):  # If it's a number, convert it to a list
            ind = sc.promotetolist(ind)
        ind.extend(args)
        if dateformat is None:
            dateformat = '%Y-%m-%d'

        # Do the conversion
        dates = []
        for i in ind:
            date_obj = self['start_day'] + dt.timedelta(days=int(i))
            if as_date:
                dates.append(date_obj)
            else:
                dates.append(date_obj.strftime(dateformat))

        # Return a string rather than a list if only one provided
        if len(ind) == 1:
            dates = dates[0]

        return dates
Beispiel #22
0
def process_daily_data(daily_data, sim, start_day, as_int=False):
    '''
    This function performs one of two things: if the daily data are supplied as
    a number, then it converts it to an array of the right length. If the daily
    data are supplied as a Pandas series or dataframe with a date index, then it
    reindexes it to match the start date of the simulation. Otherwise, it does
    nothing.

    Args:
        daily_data (number, dataframe, or series): the data to convert to standardized format
        sim (Sim): the simulation object
        start_day (date): the start day of the simulation, in already-converted datetime.date format
        as_int (bool): whether to convert to an integer
    '''
    if sc.isnumber(daily_data):  # If a number, convert to an array
        if as_int: daily_data = int(daily_data)  # Make it an integer
        daily_data = np.array([daily_data] * sim.npts)
    elif isinstance(daily_data, (pd.Series, pd.DataFrame)):
        start_date = sim['start_day'] + dt.timedelta(days=start_day)
        end_date = daily_data.index[-1]
        dateindex = pd.date_range(start_date, end_date)
        daily_data = daily_data.reindex(dateindex, fill_value=0).to_numpy()
    return daily_data
Beispiel #23
0
    def validate_pars(self):
        ''' Some parameters can take multiple types; this makes them consistent '''

        # Handle types
        for key in ['pop_size', 'pop_infected', 'pop_size']:
            try:
                self[key] = int(self[key])
            except Exception as E:
                errormsg = f'Could not convert {key}={self[key]} of {type(self[key])} to integer'
                raise ValueError(errormsg) from E

        # Handle start day
        start_day = self['start_day']  # Shorten
        if start_day in [None, 0]:  # Use default start day
            start_day = '2020-03-01'
        self['start_day'] = cvm.date(start_day)

        # Handle end day and n_days
        end_day = self['end_day']
        n_days = self['n_days']
        if end_day:
            self['end_day'] = cvm.date(end_day)
            n_days = cvm.daydiff(self['start_day'], self['end_day'])
            if n_days <= 0:
                errormsg = f"Number of days must be >0, but you supplied start={str(self['start_day'])} and end={str(self['end_day'])}, which gives n_days={n_days}"
                raise ValueError(errormsg)
            else:
                self['n_days'] = int(n_days)
        else:
            if n_days:
                self['n_days'] = int(n_days)
                self['end_day'] = self.date(
                    n_days)  # Convert from the number of days to the end day
            else:
                errormsg = f'You must supply one of n_days and end_day, not "{n_days}" and "{end_day}"'
                raise ValueError(errormsg)

        # Handle parameters specified by layer

        # Try to figure out what the layer keys should be
        layer_keys = None  # e.g. household, school
        layer_pars = ['beta_layer', 'contacts', 'iso_factor', 'quar_factor']
        if self.people is not None:
            layer_keys = set(self.people.contacts.keys())
        elif isinstance(self['beta_layer'], dict):
            layer_keys = list(
                self['beta_layer'].keys()
            )  # Get keys from beta_layer since the "most required" layer parameter
        else:
            layer_keys = [
                'a'
            ]  # Assume this by default, corresponding to random/no layers

        # Convert scalar layer parameters to dictionaries
        for lp in layer_pars:
            val = self[lp]
            if sc.isnumber(
                    val
            ):  # It's a scalar instead of a dict, assume it's all contacts
                self[lp] = {k: val for k in layer_keys}

        # Handle key mismaches
        for lp in layer_pars:
            lp_keys = set(self.pars[lp].keys())
            if not lp_keys == set(layer_keys):
                errormsg = f'Layer parameters have inconsistent keys:'
                for lp2 in layer_pars:  # Fail on first error, but re-loop to list all of them
                    errormsg += f'\n{lp2} = ' + ', '.join(self.pars[lp].keys())
                raise sc.KeyNotFoundError(errormsg)

        if self.people is not None:
            pop_keys = set(self.people.contacts.keys())
            if pop_keys != layer_keys:
                errormsg = f'Please update your parameter keys {layer_keys} to match population keys {pop_keys}. You may find sim.reset_layer_pars() helpful.'
                raise sc.KeyNotFoundError(errormsg)

        # Handle population data
        popdata_choices = ['random', 'hybrid', 'clustered', 'synthpops']
        choice = self['pop_type']
        if choice not in popdata_choices:
            choicestr = ', '.join(popdata_choices)
            errormsg = f'Population type "{choice}" not available; choices are: {choicestr}'
            raise ValueError(errormsg)

        # Handle interventions
        self['interventions'] = sc.promotetolist(self['interventions'],
                                                 keepnone=False)
        for i, interv in enumerate(self['interventions']):
            if isinstance(
                    interv, dict
            ):  # It's a dictionary representation of an intervention
                self['interventions'][i] = cvi.InterventionDict(**interv)

        return
Beispiel #24
0
def get_doubling_time(sim,
                      series=None,
                      interval=None,
                      start_day=None,
                      end_day=None,
                      moving_window=None,
                      exp_approx=False,
                      max_doubling_time=100,
                      eps=1e-3,
                      verbose=None):
    '''
    Method to calculate doubling time.

    **Examples**
    ::

        get_doubling_time(sim, interval=[3,30]) # returns the doubling time over the given interval (single float)
        get_doubling_time(sim, interval=[3,30], moving_window=3) # returns doubling times calculated over moving windows (array)
    '''

    # Set verbose level
    if verbose is None:
        verbose = sim['verbose']

    # Validate inputs: series
    if series is None or isinstance(series, str):
        if not sim.results_ready:
            raise Exception(
                f"Results not ready, cannot calculate doubling time")
        else:
            if series is None or series not in sim.result_keys():
                sc.printv(
                    f"Series not supplied or not found in results; defaulting to use cumulative exposures",
                    1, verbose)
                series = 'cum_infections'
            series = sim.results[series].values
    else:
        series = sc.promotetoarray(series)

    # Validate inputs: interval
    if interval is not None:
        if len(interval) != 2:
            sc.printv(
                f"Interval should be a list/array/tuple of length 2, not {len(interval)}. Resetting to length of series.",
                1, verbose)
            interval = [0, len(series)]
        start_day, end_day = interval[0], interval[1]

    if len(series) < end_day:
        sc.printv(
            f"End day {end_day} is after the series ends ({len(series)}). Resetting to length of series.",
            1, verbose)
        end_day = len(series)
    int_length = end_day - start_day

    # Deal with moving window
    if moving_window is not None:
        if not sc.isnumber(moving_window):
            sc.printv(
                f"Moving window should be an integer; ignoring and calculating single result",
                1, verbose)
            doubling_time = get_doubling_time(sim,
                                              series=series,
                                              start_day=start_day,
                                              end_day=end_day,
                                              moving_window=None,
                                              exp_approx=exp_approx)

        else:
            if not isinstance(moving_window, int):
                sc.printv(
                    f"Moving window should be an integer; recasting {moving_window} the nearest integer... ",
                    1, verbose)
                moving_window = int(moving_window)
            if moving_window < 2:
                sc.printv(
                    f"Moving window should be greater than 1; recasting {moving_window} to 2",
                    1, verbose)
                moving_window = 2

            doubling_time = []
            for w in range(int_length - moving_window + 1):
                this_start = start_day + w
                this_end = this_start + moving_window
                this_doubling_time = get_doubling_time(sim,
                                                       series=series,
                                                       start_day=this_start,
                                                       end_day=this_end,
                                                       exp_approx=exp_approx)
                doubling_time.append(this_doubling_time)

    # Do calculations
    else:
        if not exp_approx:
            try:
                import statsmodels.api as sm
            except ModuleNotFoundError as E:
                errormsg = f'Could not import statsmodels ({E}), falling back to exponential approximation'
                print(errormsg)
                exp_approx = True
        if exp_approx:
            if series[start_day] > 0:
                r = series[end_day] / series[start_day]
                if r > 1:
                    doubling_time = int_length * np.log(2) / np.log(r)
                    doubling_time = min(
                        doubling_time,
                        max_doubling_time)  # Otherwise, it's unbounded
            else:
                raise ValueError(
                    f"Can't calculate doubling time with exponential approximation when initial value is zero."
                )
        else:

            if np.any(series[start_day:end_day]
                      ):  # Deal with zero values if possible
                nonzero = np.nonzero(series[start_day:end_day])[0]
                if len(nonzero) >= 2:
                    exog = sm.add_constant(np.arange(len(nonzero)))
                    endog = np.log2((series[start_day:end_day])[nonzero])
                    model = sm.OLS(endog, exog)
                    doubling_rate = model.fit().params[1]
                    if doubling_rate > eps:
                        doubling_time = 1.0 / doubling_rate
                    else:
                        doubling_time = max_doubling_time
                else:
                    raise ValueError(
                        f"Can't calculate doubling time for series {series[start_day:end_day]}. Check whether series is growing."
                    )
            else:
                raise ValueError(
                    f"Can't calculate doubling time for series {series[start_day:end_day]}. Check whether series is growing."
                )

    return doubling_time
Beispiel #25
0
    def _get_ia(self, which, label=None, partial=False, as_list=False, as_inds=False, die=True, first=False):
        ''' Helper method for get_interventions() and get_analyzers(); see get_interventions() docstring '''

        # Handle inputs
        if which not in ['interventions', 'analyzers']:
            errormsg = f'This method is only defined for interventions and analyzers, not "{which}"'
            raise ValueError(errormsg)

        ia_list = self.pars[which] # List of interventions or analyzers
        n_ia = len(ia_list) # Number of interventions/analyzers

        if label == 'summary': # Print a summary of the interventions
            df = pd.DataFrame(columns=['ind', 'label', 'type'])
            for ind,ia_obj in enumerate(ia_list):
                df = df.append(dict(ind=ind, label=str(ia_obj.label), type=type(ia_obj)), ignore_index=True)
            print(f'Summary of {which}:')
            print(df)
            return

        else: # Standard usage case
            position = 0 if first else -1 # Choose either the first or last element
            if label is None:
                label = position # Get the last element
            labels = sc.promotetolist(label)

            # Calculate the matches
            matches = []
            match_inds = []
            for label in labels:
                if sc.isnumber(label):
                    matches.append(ia_list[label]) # This will raise an exception if an invalid index is given
                    label = n_ia + label if label<0 else label # Convert to a positive number
                    match_inds.append(label)
                elif sc.isstring(label) or isinstance(label, type):
                    for ind,ia_obj in enumerate(ia_list):
                        if sc.isstring(label) and ia_obj.label == label or (partial and (label in str(ia_obj.label))):
                            matches.append(ia_obj)
                            match_inds.append(ind)
                        elif isinstance(label, type) and isinstance(ia_obj, label):
                            matches.append(ia_obj)
                            match_inds.append(ind)
                else:
                    errormsg = f'Could not interpret label type "{type(label)}": should be str, int, or {which} class'
                    raise TypeError(errormsg)

            # Parse the output options
            if as_inds:
                output = match_inds
            elif as_list:
                output = matches
            else: # Normal case, return actual interventions
                if len(matches) == 0:
                    if die:
                        errormsg = f'No {which} matching "{label}" were found'
                        raise ValueError(errormsg)
                    else:
                        output = None
                else:
                    output = matches[position] # Return either the first or last match

            return output
def test_baseline():
    ''' Compare the current default sim against the saved baseline '''

    # Load existing baseline
    baseline = sc.loadjson(baseline_filename)
    old = baseline[baseline_key]

    # Calculate new baseline
    sim = cv.Sim(verbose=0)
    sim.run()
    new = sim.summary

    # Compare keys
    errormsg = ''
    old_keys = set(old.keys())
    new_keys = set(new.keys())
    if old_keys != new_keys:
        errormsg = f"Keys don't match!\n"
        missing = old_keys - new_keys
        extra   = new_keys - old_keys
        if missing:
            errormsg += f'  Missing old keys: {missing}\n'
        if extra:
            errormsg += f'  Extra new keys: {extra}\n'

    mismatches = {}
    union = old_keys.union(new_keys)
    for key in new.keys(): # To ensure order
        if key in union:
            old_val = old[key] if key in old else 'not present'
            new_val = new[key] if key in new else 'not present'
            if old_val != new_val:
                mismatches[key] = {'old': old_val, 'new': new_val}

    if len(mismatches):
        errormsg = '\nThe following values have changed from the previous baseline!\n'
        errormsg += 'If this is intentional, please rerun "tests/update_baseline" and commit.\n'
        errormsg += 'Mismatches:\n'
        df = pd.DataFrame.from_dict(mismatches).transpose()
        diff   = []
        ratio  = []
        change = []
        small_change = 1e-3 # Define a small change, e.g. a rounding error
        for mdict in mismatches.values():
            old = mdict['old']
            new = mdict['new']
            if sc.isnumber(new) and sc.isnumber(old) and old>0:
                this_diff  = new - old
                this_ratio = new/old
                abs_ratio  = max(this_ratio, 1.0/this_ratio)

                # Set the character to use
                if abs_ratio<small_change:
                    change_char = '≈'
                elif new > old:
                    change_char = '↑'
                elif new < old:
                    change_char = '↓'
                else:
                    errormsg = f'Could not determine relationship between old={old} and new={new}'
                    raise ValueError(errormsg)

                # Set how many repeats it should have
                repeats = 1
                if abs_ratio >= 1.1:
                    repeats = 2
                if abs_ratio >= 2:
                    repeats = 3
                if abs_ratio >= 10:
                    repeats = 4

                this_change = change_char*repeats
            else:
                this_diff   = np.nan
                this_ratio  = np.nan
                this_change = 'N/A'

            diff.append(this_diff)
            ratio.append(this_ratio)
            change.append(this_change)

        df['diff']   = diff
        df['ratio']  = ratio
        for col in ['old', 'new', 'diff', 'ratio']:
            df[col] = df[col].round(decimals=3)
        df['change'] = change
        errormsg += str(df)

    # Raise an error if mismatches were found
    if errormsg:
        raise ValueError(errormsg)
    else:
        print('Baseline matches')

    return new
Beispiel #27
0
def date(obj, *args, start_date=None, dateformat=None, as_date=True):
    '''
    Convert a string or a datetime object to a date object. To convert to an integer
    from the start day, it is recommended you supply a start date, or use sim.date()
    instead; otherwise, it will calculate the date counting days from 2020-01-01.
    This means that the output of cv.date() will not necessarily match the output
    of sim.date() for an integer input.

    Args:
        obj (str, date, datetime, list, array): the object to convert
        args (str, date, datetime): additional objects to convert
        start_date (str, date, datetime): the starting date, if an integer is supplied
        dateformat (str): the format to return the date in
        as_date (bool): whether to return as a datetime date instead of a string

    Returns:
        dates (date or list): either a single date object, or a list of them

    **Examples**::

        cv.date('2020-04-05') # Returns datetime.date(2020, 4, 5)
        cv.date('2020-04-14', start_date='2020-04-04', as_date=False) # Returns 10
        cv.date([35,36,37], as_date=False) # Returns ['2020-02-05', '2020-02-06', '2020-02-07']
    '''

    if obj is None:
        return None

    # Convert to list and handle other inputs
    if isinstance(obj, np.ndarray):
        obj = obj.tolist()  # If it's an array, convert to a list
    obj = sc.promotetolist(obj)  # Ensure it's iterable
    obj.extend(args)
    if dateformat is None:
        dateformat = '%Y-%m-%d'
    if start_date is None:
        start_date = '2020-01-01'

    dates = []
    for d in obj:
        if d is None:
            dates.append(d)
            continue
        try:
            if type(
                    d
            ) == dt.date:  # Do not use isinstance, since must be the exact type
                pass
            elif sc.isstring(d):
                d = sc.readdate(d).date()
            elif isinstance(d, dt.datetime):
                d = d.date()
            elif sc.isnumber(d):
                if start_date is None:
                    errormsg = f'To convert the number {d} to a date, you must supply start_date'
                    raise ValueError(errormsg)
                d = date(start_date) + dt.timedelta(days=int(d))
            else:
                errormsg = f'Cannot interpret {type(d)} as a date, must be date, datetime, or string'
                raise TypeError(errormsg)
            if as_date:
                dates.append(d)
            else:
                dates.append(d.strftime(dateformat))
        except Exception as E:
            errormsg = f'Conversion of "{d}" to a date failed: {str(E)}'
            raise ValueError(errormsg)

    # Return an integer rather than a list if only one provided
    if len(dates) == 1:
        dates = dates[0]

    return dates
Beispiel #28
0
    def __init__(self, pars, strict=True, **kwargs):

        # Handle pars and population size
        if sc.isnumber(pars):  # Interpret as a population size
            pars = {'pop_size': pars}  # Ensure it's a dictionary
        self.pars = pars  # Equivalent to self.set_pars(pars)
        self.pars['pop_size'] = int(pars['pop_size'])
        self.pars.setdefault('n_strains', 1)
        self.pars.setdefault('location', None)
        self.version = cvv.__version__  # Store version info

        # Other initialization
        self.t = 0  # Keep current simulation time
        self._lock = False  # Prevent further modification of keys
        self.meta = cvd.PeopleMeta()  # Store list of keys and dtypes
        self.contacts = None
        self.init_contacts()  # Initialize the contacts
        self.infection_log = [
        ]  # Record of infections - keys for ['source','target','date','layer']

        # Set person properties -- all floats except for UID
        for key in self.meta.person:
            if key == 'uid':
                self[key] = np.arange(self.pars['pop_size'],
                                      dtype=cvd.default_int)
            else:
                self[key] = np.full(self.pars['pop_size'],
                                    np.nan,
                                    dtype=cvd.default_float)

        # Set health states -- only susceptible is true by default -- booleans except exposed by strain which should return the strain that ind is exposed to
        for key in self.meta.states:
            val = (
                key in ['susceptible', 'naive']
            )  # Default value is True for susceptible and naive, false otherwise
            self[key] = np.full(self.pars['pop_size'], val, dtype=bool)

        # Set strain states, which store info about which strain a person is exposed to
        for key in self.meta.strain_states:
            self[key] = np.full(self.pars['pop_size'],
                                np.nan,
                                dtype=cvd.default_float)
        for key in self.meta.by_strain_states:
            self[key] = np.full(
                (self.pars['n_strains'], self.pars['pop_size']),
                False,
                dtype=bool)

        # Set immunity and antibody states
        for key in self.meta.imm_states:  # Everyone starts out with no immunity
            self[key] = np.zeros(
                (self.pars['n_strains'], self.pars['pop_size']),
                dtype=cvd.default_float)
        for key in self.meta.nab_states:  # Everyone starts out with no antibodies
            self[key] = np.full(self.pars['pop_size'],
                                np.nan,
                                dtype=cvd.default_float)
        for key in self.meta.vacc_states:
            self[key] = np.zeros(self.pars['pop_size'], dtype=cvd.default_int)

        # Set dates and durations -- both floats
        for key in self.meta.dates + self.meta.durs:
            self[key] = np.full(self.pars['pop_size'],
                                np.nan,
                                dtype=cvd.default_float)

        # Store the dtypes used in a flat dict
        self._dtypes = {key: self[key].dtype
                        for key in self.keys()
                        }  # Assign all to float by default
        self._lock = strict  # If strict is true, stop further keys from being set (does not affect attributes)

        # Store flows to be computed during simulation
        self.init_flows()

        # Although we have called init(), we still need to call initialize()
        self.initialized = False

        # Handle contacts, if supplied (note: they usually are)
        if 'contacts' in kwargs:
            self.add_contacts(kwargs.pop('contacts'))

        # Handle all other values, e.g. age
        for key, value in kwargs.items():
            if strict:
                self.set(key, value)
            else:
                self[key] = value

        self._pending_quarantine = defaultdict(
            list
        )  # Internal cache to record people that need to be quarantined on each timestep {t:(person, quarantine_end_day)}

        return
Beispiel #29
0
def check_dist(actual, expected, std=None, dist='norm', check='dist', label=None, alpha=0.05, size=10000, verbose=True, die=False, stats=False):
    """
    Check whether counts match the expected distribution. The distribution can be
    any listed in scipy.stats. The parameters for the distribution should be supplied
    via the "expected" argument. The standard deviation for a normal distribution is
    a special case; it can be supplied separately or calculated from the (actual) data.

    Args:
        actual (int, float, or array) : the observed value, or distribution of values
        expected (int, float, tuple)  : the expected value; or, a tuple of arguments
        std (float)                   : for normal distributions, the standard deviation of the expected value (taken from data if not supplied)
        dist (str)                    : the type of distribution to use
        check (str)                   : what to check: 'dist' = entire distribution (default), 'mean' (equivalent to supplying np.mean(actual)), or 'median'
        label (str)                   : the name of the variable being tested
        alpha (float)                 : the significance level at which to reject the null hypothesis
        size (int)                    : the size of the sample from the expected distribution to compare with if distribution is discrete

        verbose (bool)                : print a warning if the null hypothesis is rejected
        die (bool)                    : raise an exception if the null hypothesis is rejected
        stats (bool)                  : whether to return statistics

    Returns:
        If stats is True, returns statistics: whether null hypothesis is
        rejected, pvalue, number of samples, expected quintiles, observed
        quintiles, and the observed quantile.

    **Examples**::

        sp.check_dist(actual=[3,4,4,2,3], expected=3, dist='poisson')
        sp.check_dist(actual=[0.14, -3.37,  0.59, -0.07], expected=0, std=1.0, dist='norm')
        sp.check_dist(actual=5.5, expected=(1, 5), dist='lognorm')
    """
    # Handle inputs
    label = f' "{label}"' if label else ''
    is_dist = sc.isiterable(actual)

    # Set distribution
    if dist.lower() in ['norm', 'normal', 'gaussian']:
        if std is None:
            if is_dist:
                std = np.std(actual)  # Get standard deviation from the data
            else: # pragma: no cover
                std = 1.0
        args = (expected, std)
        scipydist = getattr(scipy.stats, 'norm')
        truedist = scipy.stats.norm(expected, std)
    else:
        try:
            if sc.isnumber(expected):
                args = (expected, )
            else:
                args = tuple(expected)
            scipydist = getattr(scipy.stats, dist)
            truedist = scipydist(*args)
        except Exception as E:
            errormsg = f'Distribution "{dist}" not supported with the expected values supplied; valid distributions are those in scipy.stats'
            raise NotImplementedError(errormsg) from E

    # Calculate stats
    if is_dist and check == 'dist':
        quantile = truedist.cdf(np.median(actual))

        # only if distribution is continuous
        if isinstance(scipydist, scipy.stats.rv_continuous):
            teststat, pvalue = scipy.stats.kstest(rvs=actual, cdf=dist, args=args)  # Use the K-S test to see if came from the same distribution

        # ks test against large sample from the theoretical distribution
        elif isinstance(scipydist, scipy.stats.rv_discrete):
            expected_r = truedist.rvs(size=size)
            teststat, pvalue = scipy.stats.ks_2samp(actual, expected_r)

        else: # pragma: no cover
            errormsg = 'Distribution is neither continuous or discrete and so not supported at this time.'
            raise NotImplementedError(errormsg)
        null = pvalue > alpha

    else:
        if check == 'mean':
            value = np.mean(actual)
        elif check == 'median':
            value = np.median(actual)
        else:
            value = actual
        quantile = truedist.cdf(value)  # If it's a single value, see where it lands on the Poisson CDF
        pvalue = 1.0-2*abs(quantile-0.5)  # E.g., 0.975 maps on to p=0.05
        minquant = alpha/2  # e.g., 0.025 for alpha=0.05
        maxquant = 1-alpha/2  # e.g., 0.975 for alpha=0.05
        minval = truedist.ppf(minquant)
        maxval = truedist.ppf(maxquant)
        quant_check = (minquant <= quantile <= maxquant)  # True if above minimum and below maximum
        val_check = (minval <= value <= maxval)  # Check values
        null = quant_check or val_check  # Consider it to pass if either passes

    # Additional stats
    n_samples = len(actual) if is_dist else 1
    eps = 1.0/n_samples if n_samples > 4 else 1e-2  # For small number of samples, use default limits
    quintiles = [eps, 0.25, 0.5, 0.75, 1-eps]
    obvs_quin = np.quantile(actual, quintiles) if is_dist else actual
    expect_quin = truedist.ppf(quintiles)

    # If null hypothesis is rejected, print a warning or error
    if not null:
        msg = f''''
Variable{label} with n={n_samples} samples is out of range using the distribution:
    {dist}({args}) →
    p={pvalue} < α={alpha}
Expected quintiles are: {expect_quin}
Observed quintiles are: {obvs_quin}
Observed median is in quantile: {quantile}'''
        if die:
            raise ValueError(msg)
        elif verbose:
            warnings.warn(msg)

    # If null hypothesis is not rejected, under verbose, print a confirmation
    if null and verbose:
        print(f'Check passed. Null hypothesis with expected distribution: {dist}{args} not rejected.')
        if is_dist and check == 'dist':
            print(f'Test statistic: {teststat}, pvalue: {pvalue}')

    if not stats:
        return null
    else:
        s = sc.objdict()
        s.null = null
        s.pvalue = pvalue
        s.n_samples = n_samples
        s.expected_quintiles = expect_quin
        s.observed_quintiles = obvs_quin
        s.observed_quantile = quantile
        return s
Beispiel #30
0
    def __init__(self, pars, strict=True, **kwargs):

        # Handle pars and population size
        if sc.isnumber(pars):  # Interpret as a population size
            pars = {'pop_size': pars}  # Ensure it's a dictionary
        self.pars = pars  # Equivalent to self.set_pars(pars)
        self.pop_size = int(pars['pop_size'])
        self.location = pars.get(
            'location')  # Try to get location, but set to None otherwise
        self.version = cvv.__version__  # Store version info

        # Other initialization
        self.t = 0  # Keep current simulation time
        self._lock = False  # Prevent further modification of keys
        self.meta = cvd.PeopleMeta()  # Store list of keys and dtypes
        self.contacts = None
        self.init_contacts()  # Initialize the contacts
        self.infection_log = [
        ]  # Record of infections - keys for ['source','target','date','layer']

        # Set person properties -- all floats except for UID
        for key in self.meta.person:
            if key == 'uid':
                self[key] = np.arange(self.pop_size, dtype=cvd.default_int)
            else:
                self[key] = np.full(self.pop_size,
                                    np.nan,
                                    dtype=cvd.default_float)

        # Set health states -- only susceptible is true by default -- booleans
        for key in self.meta.states:
            if key == 'susceptible':
                self[key] = np.full(self.pop_size, True, dtype=bool)
            else:
                self[key] = np.full(self.pop_size, False, dtype=bool)

        # Set dates and durations -- both floats
        for key in self.meta.dates + self.meta.durs:
            self[key] = np.full(self.pop_size, np.nan, dtype=cvd.default_float)

        # Store the dtypes used in a flat dict
        self._dtypes = {key: self[key].dtype
                        for key in self.keys()
                        }  # Assign all to float by default
        self._lock = strict  # If strict is true, stop further keys from being set (does not affect attributes)

        # Store flows to be computed during simulation
        self.flows = {key: 0 for key in cvd.new_result_flows}

        # Although we have called init(), we still need to call initialize()
        self.initialized = False

        # Handle contacts, if supplied (note: they usually are)
        if 'contacts' in kwargs:
            self.add_contacts(kwargs.pop('contacts'))

        # Handle all other values, e.g. age
        for key, value in kwargs.items():
            if strict:
                self.set(key, value)
            else:
                self[key] = value

        self._pending_quarantine = defaultdict(
            list
        )  # Internal cache to record people that need to be quarantined on each timestep {t:(person, quarantine_end_day)}
        return