Beispiel #1
0
  def map_to_image_space(refl, d, dhs, dks, dls):
    from scitbx.array_family import flex
    d_elems = d.elems
    bb = refl.bounding_box
    dxs = d_elems[0] * dhs + d_elems[1] * dks + d_elems[2] * dls
    dys = d_elems[3] * dhs + d_elems[4] * dks + d_elems[5] * dls
    dzs = d_elems[6] * dhs + d_elems[7] * dks + d_elems[8] * dls
    xs = flex.floor(dxs + refl.image_coord_px[0]).iround() - bb[0]
    ys = flex.floor(dys + refl.image_coord_px[1]).iround() - bb[2]
    zs = flex.floor(dzs + refl.frame_number).iround() - bb[4]
    xyz = flex.vec3_int(zs, ys, xs)
    xyz = xyz.select((xs >= 0 and xs < (bb[1] - bb[0])) &
                     (ys >= 0 and ys < (bb[3] - bb[2])) &
                     (zs >= 0 and zs < (bb[5] - bb[4])))
    for _xyz in xyz:
      refl.shoebox[_xyz] += 1

    return
Beispiel #2
0
  def map_to_image_space(refl, d, dhs, dks, dls):
    from scitbx.array_family import flex
    d_elems = d.elems
    bb = refl.bounding_box
    dxs = d_elems[0] * dhs + d_elems[1] * dks + d_elems[2] * dls
    dys = d_elems[3] * dhs + d_elems[4] * dks + d_elems[5] * dls
    dzs = d_elems[6] * dhs + d_elems[7] * dks + d_elems[8] * dls
    xs = flex.floor(dxs + refl.image_coord_px[0]).iround() - bb[0]
    ys = flex.floor(dys + refl.image_coord_px[1]).iround() - bb[2]
    zs = flex.floor(dzs + refl.frame_number).iround() - bb[4]
    xyz = flex.vec3_int(zs, ys, xs)
    xyz = xyz.select((xs >= 0 and xs < (bb[1] - bb[0])) &
                     (ys >= 0 and ys < (bb[3] - bb[2])) &
                     (zs >= 0 and zs < (bb[5] - bb[4])))
    for _xyz in xyz:
      refl.shoebox[_xyz] += 1

    return
Beispiel #3
0
    def compute_threshold(
        self, image, mask, *, imageset, i_panel, region_of_interest=None, **kwargs
    ):
        r"""
        Compute the threshold.

        :param image: The image to process
        :param mask: The pixel mask on the image
        :\*\*kwargs: Arbitrary keyword arguments
        :returns: A boolean mask showing foreground/background pixels
        """

        if self.kernel:
            image = convolve(image, self.kernel)

        panel = imageset.get_detector()[i_panel]
        beam = imageset.get_beam()

        # Get 2θ array for the panel or ROI
        two_theta_array = panel.get_two_theta_array(beam.get_s0())
        if region_of_interest:
            x0, x1, y0, y1 = region_of_interest
            two_theta_array = two_theta_array[y0:y1, x0:x1]

        # Convert to 2θ bin selections
        lookup = two_theta_array - flex.min(two_theta_array)
        n_bins = self.params.spotfinder.threshold.radial_profile.n_bins
        multiplier = n_bins / flex.max(lookup + 1e-10)
        lookup *= multiplier  # values now in range [0,n_bins+1)
        lookup = (
            flex.floor(lookup).iround().as_size_t()
        )  # values now in range [0,n_bins-1]

        # Calculate median intensity and IQR within each bin of masked values
        masked_lookup = lookup.select(mask.as_1d())
        masked_image = image.select(mask.as_1d())
        binned_statistics = BinnedStatistics(masked_image, masked_lookup, n_bins)
        med_I = binned_statistics.get_medians()
        iqr = binned_statistics.get_iqrs()

        # Determine the threshold value for each bin. This should be at least
        # 1 quantum greater value than the median to avoid selecting everything
        # in low background cases
        n_iqr = self.params.spotfinder.threshold.radial_profile.n_iqr
        add_level = n_iqr * iqr
        adu = 1 / panel.get_gain()
        add_level.set_selected(add_level <= adu, 2.0 * adu)
        threshold = med_I + add_level

        # Now construct a threshold image
        thresh_im = threshold.select(lookup.as_1d())

        # Peaks are unmasked pixels greater than the threshold
        peaks = image > thresh_im
        return peaks & mask