Beispiel #1
0
 def sort(self):
   perm = flex.sort_permutation(
     data=flex.abs(flex.double(self.array_of_a())),
     reverse=True)
   return sum(
     flex.select(self.array_of_a(), perm),
     flex.select(self.array_of_b(), perm),
     self.c(),
     self.use_c())
Beispiel #2
0
    def fake_it(self, size):
        selection_set = self.non_para_bootstrap.draw(size)
        isel = flex.int()

        for element in selection_set:
            isel.append(int(element))

        new_x = flex.double(flex.select(self.x_data, isel))
        new_y = flex.double(flex.select(self.y_data, isel))
        return new_x, new_y
def test_masked_mean_filter():
    from scitbx.array_family import flex

    from dials.algorithms.image.filter import mean_filter

    # Create an image
    image = flex.random_double(2000 * 2000)
    image.reshape(flex.grid(2000, 2000))
    mask = flex.random_bool(2000 * 2000, 0.99).as_int()
    mask.reshape(flex.grid(2000, 2000))

    # Calculate the summed area table
    mask2 = mask.deep_copy()
    mean = mean_filter(image, mask2, (3, 3), 1)

    # For a selection of random points, ensure that the value is the
    # sum of the area under the kernel
    eps = 1e-7
    for i in range(10000):
        i = random.randint(10, 1990)
        j = random.randint(10, 1990)
        m1 = mean[j, i]
        p = image[j - 3:j + 4, i - 3:i + 4]
        m = mask[j - 3:j + 4, i - 3:i + 4]
        if mask[j, i] == 0:
            m2 = 0.0
        else:
            p = flex.select(p, flags=m)
            mv = flex.mean_and_variance(flex.double(p))
            m2 = mv.mean()
        assert m1 == pytest.approx(m2, abs=eps)
Beispiel #4
0
 def is_correct(self, shoebox, mask, n_sigma, min_pixels):
     from scitbx.array_family import flex
     flags = [m & (1 << 0) for m in mask]
     pixels = flex.select(shoebox, flags=flags)
     assert (len(pixels) >= min_pixels)
     meanp = flex.mean_and_variance(flex.double(pixels))
     maxp = flex.max(flex.double(pixels))
     m = meanp.mean()
     s = meanp.unweighted_sample_standard_deviation()
     assert (maxp <= m + n_sigma * s)
 def is_correct(self, shoebox, mask, n_sigma, min_pixels):
   from scitbx.array_family import flex
   flags = [m & (1 << 0) for m in mask]
   pixels = flex.select(shoebox, flags=flags)
   assert(len(pixels) >= min_pixels)
   meanp = flex.mean_and_variance(flex.double(pixels))
   maxp = flex.max(flex.double(pixels))
   m = meanp.mean()
   s = meanp.unweighted_sample_standard_deviation()
   assert(maxp <= m + n_sigma * s)
Beispiel #6
0
def show_minimize_multi_histogram(f=None, reset=True):
    global minimize_multi_histogram
    minimizer_types = list(minimize_multi_histogram.keys())
    counts = flex.double(list(minimize_multi_histogram.values()))
    perm = flex.sort_permutation(data=counts, reverse=True)
    minimizer_types = flex.select(minimizer_types, perm)
    counts = counts.select(perm)
    n_total = flex.sum(counts)
    for m, c in zip(minimizer_types, counts):
        print("%-39s  %5.3f %6d" % (m, c / max(1, n_total), c), file=f)
    print(file=f)
    if (reset):
        minimize_multi_histogram = {"None": 0}
Beispiel #7
0
def show_minimize_multi_histogram(f=None, reset=True):
  global minimize_multi_histogram
  minimizer_types = minimize_multi_histogram.keys()
  counts = flex.double(minimize_multi_histogram.values())
  perm = flex.sort_permutation(data=counts, reverse=True)
  minimizer_types = flex.select(minimizer_types, perm)
  counts = counts.select(perm)
  n_total = flex.sum(counts)
  for m,c in zip(minimizer_types, counts):
    print >> f, "%-39s  %5.3f %6d" % (m, c/max(1,n_total), c)
  print >> f
  if (reset):
    minimize_multi_histogram = {"None": 0}
Beispiel #8
0
    def run(self):
        from dials.algorithms.image.filter import fano_filter
        from scitbx.array_family import flex
        from random import randint

        # Create an image
        image = flex.random_double(2000 * 2000)
        image.reshape(flex.grid(2000, 2000))
        mask = flex.random_bool(2000 * 2000, 0.99).as_int()
        mask.reshape(flex.grid(2000, 2000))

        # Calculate the summed area table
        mask2 = mask.deep_copy()
        fano_filter = fano_filter(image, mask2, (3, 3), 2)
        mean = fano_filter.mean()
        var = fano_filter.sample_variance()
        fano = fano_filter.fano()

        # For a selection of random points, ensure that the value is the
        # sum of the area under the kernel
        eps = 1e-7
        for i in range(10000):
            i = randint(10, 1990)
            j = randint(10, 1990)
            m1 = mean[j, i]
            v1 = var[j, i]
            f1 = fano[j, i]
            p = image[j - 3:j + 4, i - 3:i + 4]
            m = mask[j - 3:j + 4, i - 3:i + 4]
            if mask[j, i] == 0:
                m2 = 0.0
                v2 = 0.0
                f2 = 1.0
            else:
                p = flex.select(p, flags=m)
                mv = flex.mean_and_variance(flex.double(p))
                m2 = mv.mean()
                v2 = mv.unweighted_sample_variance()
                f2 = v2 / m2
            assert (abs(m1 - m2) <= eps)
            assert (abs(v1 - v2) <= eps)
            assert (abs(f1 - f2) <= eps)

        # Test passed
        print 'OK'
Beispiel #9
0
  def run(self):
    from dials.algorithms.image.filter import fano_filter
    from scitbx.array_family import flex
    from random import randint

    # Create an image
    image = flex.random_double(2000 * 2000)
    image.reshape(flex.grid(2000, 2000))
    mask = flex.random_bool(2000 * 2000, 0.99).as_int()
    mask.reshape(flex.grid(2000, 2000))

    # Calculate the summed area table
    mask2 = mask.deep_copy()
    fano_filter = fano_filter(image, mask2, (3, 3), 2)
    mean = fano_filter.mean()
    var = fano_filter.sample_variance()
    fano = fano_filter.fano()

    # For a selection of random points, ensure that the value is the
    # sum of the area under the kernel
    eps = 1e-7
    for i in range(10000):
      i = randint(10, 1990)
      j = randint(10, 1990)
      m1 = mean[j,i]
      v1 = var[j,i]
      f1 = fano[j,i]
      p = image[j-3:j+4,i-3:i+4]
      m = mask[j-3:j+4,i-3:i+4]
      if mask[j,i] == 0:
        m2 = 0.0
        v2 = 0.0
        f2 = 1.0
      else:
        p = flex.select(p, flags=m)
        mv = flex.mean_and_variance(flex.double(p))
        m2 = mv.mean()
        v2 = mv.unweighted_sample_variance()
        f2 = v2 / m2
      assert(abs(m1 - m2) <= eps)
      assert(abs(v1 - v2) <= eps)
      assert(abs(f1 - f2) <= eps)

    # Test passed
    print 'OK'
def test():
    from scitbx.array_family import flex

    from dials.algorithms.image.filter import index_of_dispersion_filter

    # Create an image
    image = flex.random_double(2000 * 2000)
    image.reshape(flex.grid(2000, 2000))
    mask = flex.random_bool(2000 * 2000, 0.99).as_int()
    mask.reshape(flex.grid(2000, 2000))

    # Calculate the summed area table
    mask2 = mask.deep_copy()
    index_of_dispersion_filter = index_of_dispersion_filter(
        image, mask2, (3, 3), 2)
    mean = index_of_dispersion_filter.mean()
    var = index_of_dispersion_filter.sample_variance()
    index_of_dispersion = index_of_dispersion_filter.index_of_dispersion()

    # For a selection of random points, ensure that the value is the
    # sum of the area under the kernel
    eps = 1e-7
    for i in range(10000):
        i = random.randint(10, 1990)
        j = random.randint(10, 1990)
        m1 = mean[j, i]
        v1 = var[j, i]
        f1 = index_of_dispersion[j, i]
        p = image[j - 3:j + 4, i - 3:i + 4]
        m = mask[j - 3:j + 4, i - 3:i + 4]
        if mask[j, i] == 0:
            m2 = 0.0
            v2 = 0.0
            f2 = 1.0
        else:
            p = flex.select(p, flags=m)
            mv = flex.mean_and_variance(flex.double(p))
            m2 = mv.mean()
            v2 = mv.unweighted_sample_variance()
            f2 = v2 / m2
        assert m1 == pytest.approx(m2, abs=eps)
        assert v1 == pytest.approx(v2, abs=eps)
        assert f1 == pytest.approx(f2, abs=eps)
  def tst_masked_mean_filter(self):
    from dials.algorithms.image.filter import mean_filter
    from scitbx.array_family import flex
    from random import randint

    # Create an image
    image = flex.random_double(2000 * 2000)
    image.reshape(flex.grid(2000, 2000))
    mask = flex.random_bool(2000 * 2000, 0.99).as_int()
    mask.reshape(flex.grid(2000, 2000))

    # Calculate the summed area table
    mask2 = mask.deep_copy()
    mean = mean_filter(image, mask2, (3, 3), 1)

    # For a selection of random points, ensure that the value is the
    # sum of the area under the kernel
    eps = 1e-7
    for i in range(10000):
      i = randint(10, 1990)
      j = randint(10, 1990)
      m1 = mean[j,i]
      p = image[j-3:j+4,i-3:i+4]
      m = mask[j-3:j+4,i-3:i+4]
      if mask[j,i] == 0:
        m2 = 0.0
      else:
        p = flex.select(p, flags=m)
        mv = flex.mean_and_variance(flex.double(p))
        m2 = mv.mean()
        s1 = flex.sum(flex.double(p))
        s2 = flex.sum(m.as_1d())
      assert(abs(m1 - m2) <= eps)

    # Test passed
    print 'OK'
def random_permutation(s):
  from scitbx.array_family import flex
  return flex.select(s, flex.random_permutation(size=len(s)))
Beispiel #13
0
  from dials.algorithms.background import IndexOfDispersionDiscriminator
  from dials.algorithms.background import normal_expected_n_sigma

  print normal_expected_n_sigma(30 * 30)

  discriminate_normal = NormalDiscriminator(n_sigma = normal_expected_n_sigma(30 * 30))
  discriminate_poisson = IndexOfDispersionDiscriminator(n_sigma = 2)

  grid_i = flex.int(flex.grid(grid.all()))
  for i, g in enumerate(grid):
    grid_i[i] = int(g)

  mask_normal = discriminate_normal(grid_i)
  mask_poisson = discriminate_poisson(grid_i)

  normal_pixels = flex.select(grid, flags=(mask_normal == 1))
  poisson_pixels = flex.select(grid, flags=(mask_poisson == 1))
  all_pixels = list(grid)

  line = grid.as_numpy_array()[15,:]

  from matplotlib import pylab
  pylab.subplot2grid((3, 3), (0, 0))
  pylab.hist(all_pixels, bins=20)
  pylab.subplot2grid((3, 3), (0, 1))
  pylab.hist(normal_pixels, bins=20)
  pylab.subplot2grid((3, 3), (0, 2))
  pylab.hist(poisson_pixels, bins=20)
  pylab.subplot2grid((3, 3), (1, 0), colspan=3)
  pylab.plot(line)
  pylab.subplot2grid((3, 3), (2, 0))