Beispiel #1
0
def exercise_matrix():
    a = sparse.matrix(10, 7)
    assert a.n_rows == 10 and a.n_cols == 7
    for c in a.cols():
        assert c.is_structurally_zero()
    a[0, 1] = 1.
    a[9, 5] = 2.
    assert a.non_zeroes == 2
    for i in xrange(10):
        for j in xrange(7):
            if (i, j) == (0, 1): assert a[i, j] == 1.
            elif (i, j) == (9, 5): assert a[i, j] == 2.
            else: assert a[i, j] == 0, (i, j, a[i, j])

    a = sparse.matrix(6, 3)
    assert a.n_rows == 6
    a[1, 1] = 1.
    a[3, 2] = 2.
    a[5, 1] = 2.
    a[4, 0] = 1.
    assert a.non_zeroes == 4
    assert a.n_rows == 6
    a[7, 0] = 1.
    assert a[7, 0] == 0
    assert a.n_rows == 6

    a = sparse.matrix(4, 3)
    a[0, 1] = 1.01
    b = sparse.matrix(4, 3)
    b[0, 1] = 1.02
    b[3, 2] = 0.001
    approx_equal = sparse.approx_equal(tolerance=0.1)
    assert approx_equal(a, b)

    m = 10
    a = sparse.matrix(m, 2)
    columns = (sparse.matrix_column(m, {
        1: 0.1,
        2: 0.2
    }), sparse.matrix_column(m, {
        4: 0.4,
        8: 0.8
    }))
    a[:, 0] = columns[0]
    a[:, 1] = columns[1]
    assert a[:, 0], a[:, 1] == columns

    try:
        a[1, :] = sparse.vector(2, {1: 1})
        raise Exception_expected
    except RuntimeError, e:
        assert str(e)
Beispiel #2
0
def exercise_matrix():
  a = sparse.matrix(10,7)
  assert a.n_rows == 10 and a.n_cols == 7
  for c in a.cols():
    assert c.is_structurally_zero()
  a[0,1] = 1.
  a[9,5] = 2.
  assert a.non_zeroes == 2
  for i in xrange(10):
    for j in xrange(7):
      if (i,j) == (0,1): assert a[i,j] == 1.
      elif (i,j) == (9,5): assert a[i,j] == 2.
      else: assert a[i,j] == 0, (i, j, a[i,j])

  a = sparse.matrix(6, 3)
  assert a.n_rows == 6
  a[1,1] = 1.
  a[3,2] = 2.
  a[5,1] = 2.
  a[4,0] = 1.
  assert a.non_zeroes == 4
  assert a.n_rows == 6
  a[7,0] = 1.
  assert a[7,0] == 0
  assert a.n_rows == 6

  a = sparse.matrix(4,3)
  a[0,1] = 1.01
  b = sparse.matrix(4,3)
  b[0,1] = 1.02
  b[3,2] = 0.001
  approx_equal = sparse.approx_equal(tolerance=0.1)
  assert approx_equal(a,b)

  m = 10
  a = sparse.matrix(m, 2)
  columns = ( sparse.matrix_column(m, {1:0.1, 2:0.2}),
              sparse.matrix_column(m, {4:0.4, 8:0.8}) )
  a[:,0] = columns[0]
  a[:,1] = columns[1]
  assert a[:,0], a[:,1] == columns

  try:
    a[1,:] = sparse.vector(2, {1:1})
    raise Exception_expected
  except RuntimeError, e:
    assert str(e)
Beispiel #3
0
    def _extend_gradient_vectors(results, m, n, keys=("dX_dp", "dY_dp", "dZ_dp")):
        """Extend results list by n empty results. These will each be a dictionary
        indexed by the given keys. The value for each key will be an empty vector of
        size m, to store the derivatives of n parameters, for m reflections.
        This is the sparse vector version."""

        new_results = [{key: sparse.matrix_column(m) for key in keys} for _ in range(n)]
        results.extend(new_results)

        return results
  def _extend_gradient_vectors(results, m, n,
                               keys=("dX_dp", "dY_dp", "dZ_dp")):
    """Extend results list by n empty results. These will each be a dictionary
    indexed by the given keys. The value for each key will be an empty vector of
    size m, to store the derivatives of n parameters, for m reflections.
    This is the sparse vector version."""

    from scitbx import sparse

    new_results = []
    for i in range(n):
      result = {}
      for key in keys:
        result[key] = sparse.matrix_column(m)
      new_results.append(result)
    results.extend(new_results)

    return results
    def _extend_gradient_vectors(results,
                                 m,
                                 n,
                                 keys=("dX_dp", "dY_dp", "dZ_dp")):
        """Extend results list by n empty results. These will each be a dictionary
    indexed by the given keys. The value for each key will be an empty vector of
    size m, to store the derivatives of n parameters, for m reflections.
    This is the sparse vector version."""

        from scitbx import sparse

        new_results = []
        for i in range(n):
            result = {}
            for key in keys:
                result[key] = sparse.matrix_column(m)
            new_results.append(result)
        results.extend(new_results)

        return results