def exercise_matrix_x_vector():
  from scitbx.random import variate, uniform_distribution
  for m,n in [(5,5), (3,5), (5,3)]:
    random_vectors = variate(
      sparse.vector_distribution(
        n, density=0.4,
        elements=uniform_distribution(min=-2, max=2)))
    random_matrices = variate(
      sparse.matrix_distribution(
        m, n, density=0.3,
        elements=uniform_distribution(min=-2, max=2)))
    for n_test in xrange(50):
      a = random_matrices.next()
      x = random_vectors.next()
      y = a*x
      aa = a.as_dense_matrix()
      xx = x.as_dense_vector()
      yy1 = y.as_dense_vector()
      yy2 = aa.matrix_multiply(xx)
      assert approx_equal(yy1,yy2)

  for m,n in [(5,5), (3,5), (5,3)]:
    random_matrices = variate(
      sparse.matrix_distribution(
        m, n, density=0.4,
        elements=uniform_distribution(min=-2, max=2)))
    for n_test in xrange(50):
      a = random_matrices.next()
      x = flex.random_double(n)
      y = a*x
      aa = a.as_dense_matrix()
      yy = aa.matrix_multiply(x)
      assert approx_equal(y, yy)
def exercise_random():
    from scitbx.random import variate, uniform_distribution

    g = random_matrices = variate(
        sparse.matrix_distribution(5,
                                   3,
                                   density=0.4,
                                   elements=uniform_distribution(min=-1,
                                                                 max=0.5)))
    for a in itertools.islice(g, 10):
        assert a.n_rows == 5 and a.n_cols == 3
        assert approx_equal(a.non_zeroes, a.n_rows * a.n_cols * 0.4, eps=1)
        for j in range(a.n_cols):
            for i, x in a.col(j):
                assert -1 <= x < 0.5, (i, j, x)

    g = random_vectors = variate(
        sparse.vector_distribution(6,
                                   density=0.3,
                                   elements=uniform_distribution(min=-2,
                                                                 max=2)))
    for v in itertools.islice(g, 10):
        assert v.size == 6
        assert approx_equal(v.non_zeroes, v.size * 0.3, eps=1)
        for i, x in v:
            assert -2 <= x < 2, (i, j, x)
def exercise_matrix_x_matrix():
    from scitbx.random import variate, uniform_distribution
    mat = lambda m, n: variate(
        sparse.matrix_distribution(
            m, n, density=0.4, elements=uniform_distribution(min=-10, max=10))
    )()
    a, b = mat(3, 4), mat(4, 2)
    c = a * b
    aa, bb, cc = [m.as_dense_matrix() for m in (a, b, c)]
    cc1 = aa.matrix_multiply(bb)
    assert approx_equal(cc, cc1)
Beispiel #4
0
def exercise_matrix_x_matrix():
  from scitbx.random import variate, uniform_distribution
  mat = lambda m,n: variate(
    sparse.matrix_distribution(
      m, n, density=0.4,
      elements=uniform_distribution(min=-10, max=10)))()
  a,b = mat(3,4), mat(4,2)
  c = a*b
  aa, bb, cc = [ m.as_dense_matrix() for m in (a,b,c) ]
  cc1 = aa.matrix_multiply(bb)
  assert approx_equal(cc, cc1)
def exercise_a_b_a_tr():
  from scitbx.random import variate, uniform_distribution
  for m,n in [(5,5), (3,5), (5,3)]:
    random_matrices = variate(
      sparse.matrix_distribution(
        m, n, density=0.6,
        elements=uniform_distribution(min=-3, max=10)))
    for n_test in xrange(50):
      b = flex.random_double(n*(n+1)//2)
      a = random_matrices.next()
      c = a.self_times_symmetric_times_self_transpose(b)
      aa = a.as_dense_matrix()
      bb = b.matrix_packed_u_as_symmetric()
      cc = c.matrix_packed_u_as_symmetric()
      assert approx_equal(
        cc,
        aa.matrix_multiply(bb.matrix_multiply(aa.matrix_transpose())))
Beispiel #6
0
def exercise_random():
  from scitbx.random import variate, uniform_distribution

  g = random_matrices = variate(
      sparse.matrix_distribution(
        5, 3, density=0.4,
        elements=uniform_distribution(min=-1, max=0.5)))
  for a in itertools.islice(g, 10):
    assert a.n_rows== 5 and a.n_cols == 3
    assert approx_equal(a.non_zeroes, a.n_rows*a.n_cols*0.4, eps=1)
    for j in xrange(a.n_cols):
      for i,x in a.col(j):
        assert -1 <= x < 0.5, (i,j, x)

  g = random_vectors = variate(
      sparse.vector_distribution(
        6, density=0.3,
        elements=uniform_distribution(min=-2, max=2)))
  for v in itertools.islice(g, 10):
    assert v.size == 6
    assert approx_equal(v.non_zeroes, v.size*0.3, eps=1)
    for i,x in v:
      assert -2 <= x < 2, (i,j, x)
def exercise_a_tr_diag_a_and_a_diag_a_tr():
    from scitbx.random import variate, uniform_distribution
    for m, n in [(5, 5), (3, 5), (5, 3)]:
        random_matrices = variate(
            sparse.matrix_distribution(m,
                                       n,
                                       density=0.6,
                                       elements=uniform_distribution(min=-3,
                                                                     max=10)))
        w = flex.double_range(0, m)
        ww = flex.double(m * m)
        ww.resize(flex.grid(m, m))
        ww.matrix_diagonal_set_in_place(diagonal=w)
        for n_test in range(50):
            a = next(random_matrices)
            b = a.self_transpose_times_diagonal_times_self(w)
            aa = a.as_dense_matrix()
            bb = b.as_dense_matrix()
            assert approx_equal(
                bb,
                aa.matrix_transpose().matrix_multiply(ww).matrix_multiply(aa))
            c = a.transpose().self_times_diagonal_times_self_transpose(w)
            cc = c.as_dense_matrix()
            assert approx_equal(cc, bb)