Beispiel #1
0
    elif words[0] == "r":
        RANDOM_TYPE = int(words[1])
    elif words[0] == "ls":
        TIME_FOR_SEARCH = float(words[1])
    elif words[0] == "d":
        MIN_TRANSFER_DIST = int(words[1])
    elif words[0] == "rd":
        RANDOM = int(words[1])
    elif words[0] == "ts":
        THRESHOLD_CONSTRAINTS = float(words[1])
    else:
        print
        "unused parameter (bad format):", p

name_constraint_file = parameters[1]
tree = script_tree.readTree(open(parameters[0], "r").readline())
constraints = open(name_constraint_file, "r").readlines()
root = script_tree.getRoot(tree)

print
name_constraint_file


def maximum_spearman(n):
    if n % 2 == 0:
        m = n / 2
        return 2 * m * m
    else:
        m = (n - 1) / 2
        return 2 * m * m + 2 * m
Beispiel #2
0
            mots = fichier_ensembl[l].split()
            species = mots[1].split("_")[0].title() + "_" + mots[1].split(
                "_")[1]
            genes[mots[2]] = [
                species, mots[3],
                int(mots[4]),
                int(mots[5]), mots[6]
            ]
        l = l + 1

    adjacence_file = open(analysisDir + "/deco_adjacences_" + name, "w")
    gene_file = open(analysisDir + "/deco_genes_" + name, "w")

    restricted_genes = []
    for line in tree_file:
        tree = script_tree.readTree(line)
        leaves = script_tree.getLeavesNames(tree)
        for l in leaves:
            restricted_genes.append(l)

    print len(tree_file), len(restricted_genes)

    #print restricted_genes


    def compare(x, y):
        #print x,y
        if genes[x][0] != genes[y][0]:
            return cmp(genes[x][0], genes[y][0])
        elif genes[x][1] != genes[y][1]:
            return cmp(genes[x][1], genes[y][1])
Beispiel #3
0
import sys, script_tree, random, time, math, string

MINIMUM_SUPPORT_WITHIN_A_FAMILY = 0.05
MINIMUM_FAMILY_SIZE = 5
#MAXIMUM_DIFFERENCE_WITH_PROFILE = 6000
OUTPUT_FILE_REC = "constraints_from_recs"
OUTPUT_FILE_TRF = "constraints_from_transfers"

parameters = sys.argv[1:]

species_tree = script_tree.readTree(open(parameters[0], "r").readline())
extant_species = script_tree.getLeavesNames(species_tree)
gene_tree_file = parameters[1]
gene_trees = []
for gt in open(gene_tree_file, "r").readlines():
    gene_trees.append(gt.strip())
nodes = script_tree.getNodes(species_tree)
for n in nodes:
    script_tree.setLength(species_tree, n, 1.0)


def distance_from(x, y):
    nodes = script_tree.getNodes(species_tree)
    for n in nodes:
        if script_tree.isLeaf(species_tree, n):
            name = script_tree.getName(species_tree, n)
        else:
            name = script_tree.getBootstrap(species_tree, n)
        if name == x:
            A = n
        if name == y:
import sys,script_tree,random,time,math,string

MINIMUM_SUPPORT_WITHIN_A_FAMILY = 0.05
MINIMUM_FAMILY_SIZE = 5
#MAXIMUM_DIFFERENCE_WITH_PROFILE = 6000
OUTPUT_FILE_REC = "constraints_from_recs"
OUTPUT_FILE_TRF = "constraints_from_transfers"

parameters = sys.argv[1:]

species_tree = script_tree.readTree(open(parameters[0],"r").readline())
extant_species = script_tree.getLeavesNames(species_tree)
gene_tree_file = parameters[1]
gene_trees = []
for gt in open(gene_tree_file,"r").readlines():
  gene_trees.append(gt.strip())
nodes = script_tree.getNodes(species_tree)
for n in nodes:
  script_tree.setLength(species_tree,n,1.0)
  
  
  
def distance_from(x,y):
  nodes = script_tree.getNodes(species_tree)
  for n in nodes:
    if script_tree.isLeaf(species_tree,n):
      name = script_tree.getName(species_tree,n)
    else:
      name = script_tree.getBootstrap(species_tree,n)
    if name == x:
      A = n
  genes = {}
  l = 0
  while l < len(fichier_ensembl):
          if fichier_ensembl[l][:3] == "SEQ":
                  mots = fichier_ensembl[l].split()
                  species = mots[1].split("_")[0].title()+"_"+mots[1].split("_")[1]
                  genes[mots[2]] = [species,mots[3],int(mots[4]),int(mots[5]),mots[6]] 
          l = l + 1
          
  adjacence_file = open(analysisDir+"/deco_adjacences_"+name,"w")
  gene_file = open(analysisDir+"/deco_genes_"+name,"w")

  restricted_genes = []
  for line in tree_file:
    tree = script_tree.readTree(line)
    leaves = script_tree.getLeavesNames(tree)
    for l in leaves:
      restricted_genes.append(l)

  print len(tree_file),len(restricted_genes)
  #print restricted_genes

  def compare(x,y):
    #print x,y
    if genes[x][0] != genes[y][0]:
      return cmp(genes[x][0],genes[y][0])
    elif genes[x][1] != genes[y][1]:
      return cmp(genes[x][1],genes[y][1])
    else:
      return cmp(genes[x][2],genes[y][2])
Beispiel #6
0
    nodes = script_tree.getNodes(tree)
    root = script_tree.getRoot(tree)
    for n in nodes:
        if not script_tree.isLeaf(tree, n):
            order.append(n)
    # print order
    order.sort(lambda x, y: cmp(script_tree.distanceFrom(tree, x, root),
                                script_tree.distanceFrom(tree, y, root)))
    for i in range(len(order)):
        order[i] = script_tree.getBootstrap(tree, order[i])
    return order


with open((parameters[0])) as f1:
    for line_number, mt in enumerate(f1):
        tree = script_tree.readTree(mt.strip())
        root = script_tree.getRoot(tree)

        # useful variables

        nodes = script_tree.getNodes(tree)
        leaves = script_tree.getLeavesNames(tree)
        root = script_tree.getRoot(tree)
        internal_nodes = []
        order_tree = order_from_tree(tree)

        with open(parameters[1]) as f2:
            all_orders = f2.readlines()
            morders = random.sample(all_orders, 100)
            for morder in morders:
                order_input = morder.strip().split(",")
        while len(pile) > 0 and (not (b in marques)):
                sommet = pile[-1]
                del pile[-1]
                voisins = g[sommet]
                for v in voisins:
                        if not v in marques:
                                marques.append(v)
                                pile.append(v)
        if b in marques:
                return True
        else:
                return False



tree = script_tree.readTree(open(parameters[0],"r").readline())
constraints = open(parameters[1],"r").readlines()
root = script_tree.getRoot(tree)
  
def value(order):
  index = {}
  for i in range(len(order)):
    index[order[i]] = i
  result = 0
  for e in edge_keys:
    sommets = e.split(",")
    if index.has_key(sommets[0]) and index.has_key(sommets[1]) and index[sommets[0]] > index[sommets[1]]:
      result = result + edge[e]
  return result
      
def optimisation_locale(order,duration):