Beispiel #1
0
def dataset():
    """Return dataset metadata."""
    # get the dataset from the current app
    ds = get_ds()
    logger.info('opened %s', ds)
    if ds is None:
        resp = {"_comment": "no data loaded"}
        return jsonify(resp)
    # this can be a bit slow
    date_nums = ds.variables['date_time'][:]

    # if we have an actual range, use that
    try:
        times = netCDF4.num2date(ds.variables['date_time'].valid_range,
                                 ds.variables['date_time'].units)
    except AttributeError:
        # use datenums
        times = netCDF4.num2date(
            [date_nums.min(), date_nums.max()],
            ds.variables['date_time'].units)

    if times[0].year < 1970:
        times[0] = datetime.datetime(1970, 1, 1)
    resp = {
        "name":
        ds.filepath(),
        "variables":
        list(ds.variables.keys()),
        "time_extent": [
            ensure_datetime(times[0]).isoformat(),
            ensure_datetime(times[-1]).isoformat()
        ]
    }
    ds.close()
    return jsonify(resp)
Beispiel #2
0
def load():
    # TODO: validate filename further, otherwise we might load any file
    req_data = request.get_json()

    # the filename string
    filename = req_data.get('filename')

    logger.debug(filename, pathlib.Path(filename).expanduser())
    # the expanded path
    filepath = pathlib.Path(filename).expanduser()

    resp = {"loaded": False}
    if not filepath.suffix == '.nc':
        resp["error"] = "filename does not end in .nc"
        return jsonify(resp)
    if not filepath.exists():
        resp["error"] = "file does not exist"
        return jsonify(resp)
    print(req_data)
    if req_data.get('copy', False):
        tmp_dir = tempfile.mkdtemp(prefix='sdc-', suffix='-remove')
        # copy the expanded file
        shutil.copy(filepath, tmp_dir)
        # replace filename with new filename
        filename = str(pathlib.Path(tmp_dir) / filepath.name)
    # add the dataset to the loaded app
    # perhaps use flask.g, but that did not work
    current_app.filename = filename
    ds = get_ds()
    resp["loaded"] = True
    resp["filename"] = filename
    ds.close()
    return jsonify(resp)
Beispiel #3
0
def extent():
    """Return dataset extent."""
    # get the dataset from the current app
    ds = get_ds()
    if ds is None:
        return jsonify({'error': 'data not loaded'})

    # ensure that our array is always masked
    date_time = np.ma.masked_array(ds.variables['date_time'][:])

    t_ini = netCDF4.num2date(np.min(date_time[:]),
                             ds.variables['date_time'].units)
    t_fin = netCDF4.num2date(np.max(date_time[:]),
                             ds.variables['date_time'].units)

    resp = [t_ini.year, t_fin.year]
    ds.close()
    return jsonify(resp)
Beispiel #4
0
def get_profiles():
    """ Return profile for selected points"""
    # read inputs
    cdi_ids_input = request.args.getlist("cdi_ids")

    dataset = request.values.get("dataset")

    ds = get_ds(dataset=dataset)
    if ds is None:
        return jsonify({'error': 'data not loaded'})
    # get the variable that has the cdi_ids
    cdi_id_var = get_cdi_id_var(ds=ds)

    # create a list with all the cdi_ids
    cdi_ids = netCDF4.chartostring(ds.variables[cdi_id_var][:])

    # create a list with the idxs of the given cdi_ids
    idxs = []
    for cdi_id in cdi_ids_input:

        idx = np.argmax(cdi_ids == cdi_id)
        idxs.append(idx)

    # create a list with the var that contain the temperature, salinity and depth values
    var_names = [
        name for name, var in ds.variables.items()
        if (name.startswith('var') and not '_' in name)
    ]

    # prepare the output
    # TODO take a look at these hardcoded names. Either be an input in the function or something more generic
    titles = [
        "Water temperature", "Water body salinity", "Depth", "cdi_id", "lat",
        "lon"
    ]
    output = []
    output.append(titles)

    for idx in idxs:

        cdi_id = netCDF4.chartostring(ds.variables[cdi_id_var][idx])
        lon = ds.variables['longitude'][idx].item(0)
        lat = ds.variables['latitude'][idx].item(0)

        np.array2string(cdi_id)

        idx_variables = {}
        for var_name in var_names:
            var = ds.variables[var_name]
            try:
                idx_variables[var.long_name] = var[idx]
            except IdexError:
                print("failed to index {} with index {}".format(var, idx))
        cdi_id_array = np.empty(shape=idx_variables["Depth"].shape,
                                dtype='<U28')
        cdi_id_array.fill(str(cdi_id))

        c = np.array(
            list(
                zip(idx_variables["ITS-90 water temperature"],
                    idx_variables["Water body salinity"],
                    idx_variables["Depth"])))

        df = pd.DataFrame(data=c)
        df = df.dropna(how='all')
        # create a list with lists of the values
        ls = df.values.tolist()

        #pass through all the lists of the list and append with the
        # corresponding cdi_id
        # every list: temperature, salinity, depth, cdi_id
        for item in ls:
            item.extend((str(cdi_id), round(lat, 4), round(lon, 4)))
            #item.append(str(cdi_id))
            output.append(item)

    response = {"data": output}

    #, allow_nan=False
    return simplejson.dumps(response, ignore_nan=True)
Beispiel #5
0
def dataset_slice():
    """Return dataset content."""
    # get the dataset from the current app
    year = int(request.values.get('year', datetime.datetime.now().year))
    depth = int(request.values.get('depth', 0))
    """
    read some variables and return an open file handle,
    based on data selection.
    """
    ds = get_ds()
    if ds is None:
        return jsonify({'error': 'data not loaded'})

    # slicing in time!
    t0 = netCDF4.date2num(datetime.datetime(year=year, month=1, day=1),
                          ds.variables['date_time'].units)
    t1 = netCDF4.date2num(datetime.datetime(year=year + 1, month=1, day=1),
                          ds.variables['date_time'].units)

    # ensure that our array is always masked
    date_time = np.ma.masked_array(ds.variables['date_time'][:])
    is_in_date = np.logical_and(date_time[:] >= t0, date_time[:] < t1).data
    t = np.empty(len(date_time[is_in_date]),
                 dtype=type(datetime.datetime.now()))

    # split nans and notnans makes it much faster
    dtf = np.where(date_time[is_in_date].mask == False)
    dtt = np.where(date_time[is_in_date].mask == True)
    t[dtf] = netCDF4.num2date(date_time[is_in_date][dtf],
                              ds.variables['date_time'].units)
    # do we have any masked values
    if dtt and dtt[0]:
        t[dtt] = netCDF4.num2date(date_time[is_in_date][dtt],
                                  ds.variables['date_time'].units)

    # # TODO: slicing through Depth... Hard with this sort of unstructured netcdf.
    # if data['var1'].long_name == "Depth":
    #     depth = None
    # else:
    depth = None

    if 'lat' in ds.variables:
        lat = ds['lat'][is_in_date]
    elif 'latitude' in ds.variables:
        lat = ds['latitude'][is_in_date]
    if 'lon' in ds.variables:
        lon = ds['lon'][is_in_date]
    elif 'longitude' in ds.variables:
        lon = ds['longitude'][is_in_date]

    cdi_id = netCDF4.chartostring(ds.variables['metavar4'][is_in_date])

    coordinates = np.c_[antimeridian_cut(lon), lat].tolist()

    features = []
    for i, (coordinate, cdi_id_i) in enumerate(zip(coordinates, cdi_id)):
        geometry = geojson.Point(coordinate)
        feature = geojson.Feature(id=i,
                                  geometry=geometry,
                                  properties={"cdi_id": cdi_id_i})
        features.append(feature)

    collection = geojson.FeatureCollection(features=features)
    ds.close()
    return jsonify(collection)
Beispiel #6
0
def get_profile():
    """Return profile for one cdi_id"""

    cdi_id = request.values.get("cdi_id")
    cdi_id = str(cdi_id)

    dataset = request.values.get("dataset")

    ds = get_ds(dataset=dataset)
    if ds is None:
        return jsonify({'error': 'data not loaded'})

    cdi_id_var = get_cdi_id_var(ds)
    cdi_ids = netCDF4.chartostring(ds.variables[cdi_id_var][:])

    # get the first
    idx = np.argmax(cdi_ids == cdi_id)

    var_names = [
        name for name, var in ds.variables.items()
        if name.startswith('var') and not '_' in name
    ]

    # add the variables to the list
    variables = {}
    for var_name in var_names:
        var = ds.variables[var_name]
        try:
            variables[var.long_name] = var[idx]
        except IndexError:
            logger.exception("failed to index {} with index {}".format(
                var, idx))

    df = pd.DataFrame(data=variables)
    # get rid of missing data
    df = df.dropna(how='all')

    # get metadata
    date_nums = ds.variables['date_time'][idx]
    date_units = ds.variables['date_time'].units
    date = netCDF4.num2date(date_nums, date_units)
    records = json.loads(df.to_json(orient='records'))

    lon = ds.variables['longitude'][idx]
    lat = ds.variables['latitude'][idx]

    meta_var_names = [
        name for name, var in ds.variables.items()
        if name.startswith('metavar') and not '_' in name
    ]
    meta_vars = {}

    for var_name in meta_var_names:
        var = ds.variables[var_name]
        if var.dtype == 'S1' and len(var.shape) > 1:
            meta_vars[var.long_name] = str(netCDF4.chartostring(var[idx]))
        else:
            meta_vars[var.long_name] = var[idx]

    ds.close()

    # ensure date time
    date = ensure_datetime(date)
    meta_vars.update({
        "date": date.isoformat(),
        "cdi_id": cdi_id,
        "lon": lon,
        "lat": lat
    })

    response = {"data": records, "meta": meta_vars}
    return jsonify(response)