def generate_gaussians(name, mean_std_nums, dim, min_pts, max_pts): bags = [] categories = [] for mean, std, num in mean_std_nums: cat_name = 'mean{}-std{}'.format(mean, std) for x in range(num): n_pts = np.random.randint(min_pts, max_pts+1) feats = np.random.normal(mean, std, size=(n_pts, dim)) bags.append(feats) categories.append(cat_name) features = Features(bags, categories=categories) features.save_as_hdf5('data/{}.h5'.format(name))
def generate_gaussians(name, mean_std_nums, dim, min_pts, max_pts): bags = [] categories = [] for mean, std, num in mean_std_nums: cat_name = 'mean{}-std{}'.format(mean, std) for x in range(num): n_pts = np.random.randint(min_pts, max_pts + 1) feats = np.random.normal(mean, std, size=(n_pts, dim)) bags.append(feats) categories.append(cat_name) features = Features(bags, categories=categories) features.save_as_hdf5('data/{}.h5'.format(name))
def test_with_and_without_js(): dir = os.path.join(os.path.dirname(__file__), 'data') name = 'gaussian-2d-mean0-std1,2' feats = Features.load_from_hdf5(os.path.join(dir, name + '.h5')) specs = ['hellinger'] Ks = [3, 5] with h5py.File(os.path.join(dir, name + '.divs.h5'), 'r') as f: expected = load_divs(f, specs, Ks) min_dist = f.attrs['min_dist'] est = partial(estimate_divs, feats, Ks=Ks, min_dist=min_dist, status_fn=None) with capture_output(True, True, merge=False): ds = est(specs=specs + ['js']) oth_with = ds[:, :, :-1, :] js_with = ds[:, :, -1, :] js_without = est(specs=['js'])[:, :, 0, :] assert_close(oth_with, expected, atol=5e-5, msg="others ({}) broke with JS".format(', '.join(specs))) assert_close(js_with, js_without, atol=5e-5, msg="JS different with/without others")
def test_divs(): dir = os.path.join(os.path.dirname(__file__), 'data') argses = [{'cores': cores, 'status_fn': status_fn} for cores in [1, None] for status_fn in [None]] # , True]] # TODO: test a custom status_fn also specs = ['hellinger', 'kl', 'l2', 'linear', 'renyi:0.5', 'renyi:0.7', 'renyi:0.9', 'renyi:0.99'] Ks = [1, 3, 5, 10] for name in ['gaussian-2d-mean0-std1,2', 'gaussian-20d-mean0-std1,2']: for dtype in [np.float64, np.float32]: feats = Features.load_from_hdf5( os.path.join(dir, name + '.h5'), features_dtype=dtype) with h5py.File(os.path.join(dir, name + '.divs.h5'), 'r') as f: expected = load_divs(f, specs, Ks) min_dist = f.attrs['min_dist'] tests = [] for args in argses: tests.extend(check_div(feats, expected, specs, Ks, name, min_dist=min_dist, **args)) for test in sorted(tests, key=lambda t: t[0].description): yield test
def test_kl_simple(): # verified by hand # Dhat(P||Q) = \log m/(n-1) + d / n \sum_{i=1}^n \log \nu_k(i)/rho_k(i) x = np.reshape([0., 1, 3], (3, 1)) y = np.reshape([.2, 1.2, 3.2, 7.2], (4, 1)) n = x.shape[0] m = y.shape[0] x_to_y = np.log( m / (n - 1)) + 1 / n * (np.log(1.2 / 3) + np.log(.8 / 2) + np.log(1.8 / 3)) y_to_x = np.log(n / (m - 1)) + 1 / m * (np.log(.8 / 3) + np.log(1.2 / 2) + np.log(2.2 / 3) + np.log(6.2 / 6)) # NOTE: clamping makes this test useless. x_to_y = max(x_to_y, 0) y_to_x = max(y_to_x, 0) res = estimate_divs(Features([x, y]), specs=['kl'], Ks=[2]).squeeze() assert res[0, 0] == 0 assert res[1, 1] == 0 assert np.allclose(res[1, 0], y_to_x), "{} vs {}".format(res[1, 0], y_to_x) assert np.allclose(res[0, 1], x_to_y), "{} vs {}".format(res[0, 1], x_to_y)
def test_divs(): dir = os.path.join(os.path.dirname(__file__), 'data') argses = [{ 'cores': cores, 'status_fn': status_fn } for cores in [1, None] for status_fn in [None]] # , True]] # TODO: test a custom status_fn also specs = [ 'hellinger', 'kl', 'l2', 'linear', 'renyi:0.5', 'renyi:0.7', 'renyi:0.9', 'renyi:0.99' ] Ks = [1, 3, 5, 10] for name in ['gaussian-2d-mean0-std1,2', 'gaussian-20d-mean0-std1,2']: for dtype in [np.float64, np.float32]: feats = Features.load_from_hdf5(os.path.join(dir, name + '.h5'), features_dtype=dtype) with h5py.File(os.path.join(dir, name + '.divs.h5'), 'r') as f: expected = load_divs(f, specs, Ks) min_dist = f.attrs['min_dist'] tests = [] for args in argses: tests.extend( check_div(feats, expected, specs, Ks, name, min_dist=min_dist, **args)) for test in sorted(tests, key=lambda t: t[0].description): yield test
def test_js_simple(): # verified by hand x = np.reshape([0, 1, 3], (3, 1)) y = np.reshape([.2, 1.2, 3.2, 6.2], (4, 1)) mix_ent = np.log(2) + np.log(3) + psi(2) \ + (np.log(.2) + np.log(.8) + np.log(1.8) - psi(1) - 2*psi(2)) / 6 \ + (np.log(.2) + np.log(2) + np.log(3.2) - psi(1) - 3*psi(2)) / 8 x_ent = np.log(2) + (np.log(3) + np.log(2) + np.log(3)) / 3 y_ent = np.log(3) + (np.log(3) + np.log(2) + np.log(3) + np.log(5)) / 4 right_js = mix_ent - (x_ent + y_ent) / 2 expected = np.array([[0, right_js], [right_js, 0]]) # TODO: what about clamping??? est = estimate_divs(Features([x, y]), specs=['js'], Ks=[2], status_fn=None).squeeze() assert_close(est, expected, atol=5e-5, msg="JS estimate not as expected")