def gluco_plot(time,
               gluco,
               hypo=70,
               hyper=126,
               title="Patiend ID glucose level"):
    """Plot the glucose level on a time span.
    
    Parameters
    -------------------
    time : array of datetimes, the horizontal axis
    gluco : array of float, the correspondent glucose level on the vertical axis
    hypo : number, hypoglicaemia threshold in mg/dl (default is 70, i.e. 3.9 mmol/l)
    hyper : number, hyperglicaemia threshold in mg/dl (default is 126, i.e. 7 mmol/l)
    title : string, the title of the plot (optional)
    """
    plt.figure(figsize=(10, 6))
    plt.hlines(hypo,
               time[0],
               time[-1],
               linestyles='dashed',
               label='hypoglicaemia')
    plt.hlines(hyper,
               time[0],
               time[-1],
               linestyles='dotted',
               label='hyperglicaemia')
    plt.ylim([10, 410])
    plt.plot_date(time, gluco, '-', label='glucose level')
    plt.title(title)
    plt.ylabel('mg/dL')
    plt.xticks(rotation='vertical')
    plt.legend()
Beispiel #2
0
def residuals(df,
              forecast,
              skip_first=0,
              skip_last=0,
              title="Patiend ID CGM",
              savefig=False):
    """Plot the input residuals.

    Parameters
    -------------------
    df : DataFrame, the output returned by gluco_extract(..., return_df=True)
    forecast : array of float, the prediction for the given time-series
    skip_first : number, the number of initial samples to exclude
    skip_last : number, the number of final samples to exclude
    title : string, the title of the plot (optional)
    savefig : bool, if True save title.png
    """
    # Evaluate the residuals (exclude learning and open loop ph samples)
    residuals = df.as_matrix()[skip_first:-skip_last].ravel(
    ) - forecast[skip_first:-skip_last]

    plt.figure(figsize=(12, 4), dpi=300)
    plt.plot(df.index[skip_first:-skip_last], residuals)
    DW = sm.stats.durbin_watson(residuals)
    plt.title('Durbin-Watson: {:.3f}'.format(DW))
    if savefig: plt.savefig(title + '_residuals.png')
Beispiel #3
0
def cgm(df,
        gluco_fit=None,
        hypo=70,
        hyper=126,
        title="Patiend ID CGM",
        savefig=False):
    """Plot the CGM signal on an input time span.

    Parameters
    -------------------
    df : DataFrame, the output returned by gluco_extract(..., return_df=True)
    gluco_fit : array of float, the results of a fitted model (optional)
    hypo : number, hypoglicaemia threshold in
           mg/dl (default is 70, i.e. 3.9 mmol/l)
    hyper : number, hyperglicaemia threshold
            in mg/dl (default is 126, i.e. 7 mmol/l)
    title : string, the title of the plot (optional)
    savefig : bool, if True save title.png
    """
    plt.figure(figsize=(10, 6), dpi=300)
    plt.hlines(hypo,
               df.index[0],
               df.index[-1],
               linestyles='dashed',
               label='hypoglicaemia')
    plt.hlines(hyper,
               df.index[0],
               df.index[-1],
               linestyles='dotted',
               label='hyperglicaemia')
    plt.ylim([10, 410])
    plt.plot_date(df.index, df.as_matrix(), '-', label='real CGM')
    if gluco_fit is not None:
        plt.plot(df.index, gluco_fit, '--', label='predicted CGM')
    plt.title(title)
    plt.ylabel('mg/dL')
    plt.xticks(rotation='vertical')
    plt.legend(bbox_to_anchor=(1.1, 1.0))
    if savefig: plt.savefig(title + '_fit.png')
Beispiel #4
0
# In[36]:

# ---------- Plot ------------------------ #
plt.subplot(211)
plt.plot(ts, ys, '-', label='noisy')  # noisy measures
plt.plot(ts, y, '--', label='filtered')  # filtered measures
plt.grid()
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
           loc=3,
           ncol=2,
           mode="expand",
           borderaxespad=0.)
plt.subplot(212)
residuals = ys.ravel()[0:Ns] - y.ravel()[0:Ns]
plt.plot(ts, residuals)
plt.title('Durbin-Watson: {:.3f}'.format(sm.stats.durbin_watson(residuals)))
plt.tight_layout()
plt.grid()

# ## Translate `pykalman` names into our convention
#
# **Parameter Name** (Notation)
# - initial_state_mean (`X0`)
# - initial_state_covariance (`P0`)
# - transition_matrices (`F`)
# - transition_offsets (0?)
# - transition_covariance (`Q`)
# - observation_matrices (`X`)
# - observation_offsets (0?)
# - observation_covariance (`R`)
Beispiel #5
0
obs_errors = [100, 1.0, 1.0, 1.0, 0.001]
levels = [0.95, 0.835, 0.685, 0.51, 0.34, 0.2, 0.095, 0.025]

plt.rc('lines', linewidth=1.0)

plt.figure(figsize=(9, 3), facecolor='white')

dirs = ['double']
labels = ['64 bits']

handles = []

for d, l in zip(dirs, labels):
    print(f'Plotting {d}')

    handles += plot(d, l)

plt.ylim([0, 3.5])
plt.xlabel('Time')
plt.ylabel(f'Total analysis RMSE')
plt.title('')

# Add legend
leg = plt.legend(handles=handles, frameon=True, ncol=2)
rect = leg.get_frame()
rect.set_linewidth(0.0)
rect.set_alpha(0.7)

plt.savefig(f'total_error_compare.pdf', bbox_inches='tight')
plt.show()
Beispiel #6
0
import pandas as pd

from nlpia.plots import scatter_3d

np = pd.np


df = pd.DataFrame(pd.np.random.randn(1000, 10))

np = pd.np
plt.figure()
f = plt.figure()
ax = f.add_subplot(111)
axes = df.plot(kind='scatter', x=0, y=1, ax=ax)
plt.title('2D Normally Distributed')
plt.tight_layout()
plt.show()

scatter_3d(df)
plt.show()
df.values.dot(df.values)
np.do(df.values, df.values)
np.dot(df.values, df.values)
np.dot(df.values, df.values.T)
np.dot(df.values, df.values.T).shape
np.dot(df.values, df.values.T).shape.sum()
np.dot(df.values.T, df.values)
np.dot(df.values.T, df.values).shape
norms = pd.DataFrame([[np.linalg.norm(row[:i]) for i in range(2,11)] for row in df])
row