Beispiel #1
0
def get_slic_points_labels(segm, img=None, slic_size=20, slic_regul=0.1):
    """ run SLIC on image or supepixels and return superpixels, their centers
    and also lebels (label from segmentation in position of superpixel centre)

    :param ndarray segm:
    :param ndarray img:
    :param int slic_size: superpixel size
    :param float slic_regul: regularisation in range (0, 1)
    :return:
    """
    if img is None:
        img = segm / float(segm.max())
    slic = seg_spx.segment_slic_img2d(img, sp_size=slic_size,
                                      rltv_compact=slic_regul)
    slic_centers = np.array(seg_spx.superpixel_centers(slic)).astype(int)
    labels = segm[slic_centers[:, 0], slic_centers[:, 1]]
    return slic, slic_centers, labels
Beispiel #2
0
def insert_gc_debug_images(dict_debug_imgs, segments, graph_labels, unary_cost,
                           edges, edge_weights):
    """ wrapper for placing intermediate variable to a dictionary """
    if dict_debug_imgs is None:
        return
    dict_debug_imgs['segments'] = segments
    dict_debug_imgs['edges'] = edges
    dict_debug_imgs['edge_weights'] = edge_weights
    dict_debug_imgs['imgs_unary_cost'] = \
        tl_visu.draw_graphcut_unary_cost_segments(segments, unary_cost)
    img = dict_debug_imgs.get('slic_mean', None)
    list_centres = seg_spx.superpixel_centers(segments)
    dict_debug_imgs['img_graph_edges'] = \
        tl_visu.draw_graphcut_weighted_edges(segments, list_centres, edges,
                                             edge_weights, img_bg=img)
    dict_debug_imgs['img_graph_segm'] = \
        tl_visu.draw_color_labeling(segments, graph_labels)
def estim_points_compute_features(name, img, segm, params):
    """ determine points (center candidates) using slic
    and for each compute feature vector with their names

    :param str name:
    :param ndarray img:
    :param ndarray segm:
    :param {str: any} params:
    :return str, np.array, [(int, int)], [[float]], [str]:
    """
    # superpixels on image
    assert img.shape[:2] == segm.shape[:2], \
        'shapes: %s : %s' % (repr(img.shape), repr(segm.shape))
    slic = seg_spx.segment_slic_img2d(img, params['slic_size'],
                                      params['slic_regul'])
    slic_centers = seg_spx.superpixel_centers(slic)
    # slic_edges = seg_spx.make_graph_segm_connect2d_conn4(slic)

    features, feature_names = compute_points_features(segm, slic_centers,
                                                      params)

    return name, slic, slic_centers, features, feature_names
Beispiel #4
0
def filter_boundary_points(segm, slic):
    slic_centers = np.array(seg_spx.superpixel_centers(slic)).astype(int)
    labels = segm[slic_centers[:, 0], slic_centers[:, 1]]

    vertices, edges = seg_spx.make_graph_segm_connect2d_conn4(slic)
    nb_labels = labels.max() + 1

    neighbour_labels = np.zeros((len(vertices), nb_labels))
    for e1, e2 in edges:
        # print e1, labels[e2], e2, labels[e1]
        neighbour_labels[e1, labels[e2]] += 1
        neighbour_labels[e2, labels[e1]] += 1
    neighbour_labels = neighbour_labels \
                       / np.tile(np.sum(neighbour_labels, axis=1),
                                 (nb_labels, 1)).T

    # border point nex to foreground
    filter_bg = np.logical_and(labels == 0, neighbour_labels[:, 0] < 1)
    # fulucul cels next to backround
    filter_fc = np.logical_and(labels == 1, neighbour_labels[:, 0] > 0)
    points = slic_centers[np.logical_or(filter_bg, filter_fc)]

    return points
Beispiel #5
0
def compute_edge_weights(segments,
                         image=None,
                         features=None,
                         proba=None,
                         edge_type=''):
    """
    pp 32, http://www.coe.utah.edu/~cs7640/readings/graph_cuts_intro.pdf
    exp(- norm value diff) * (geom dist vertex)**-1

    :param ndarry segments: superpixels
    :param ndarry image: input image
    :param ndarry features: features for each segment (superpixel)
    :param ndarry proba: probability of each superpixel and class
    :param str edge_type: contains edge type, if 'model', after '_' you can
        specify the metric, eg. 'model_l2'
    :return [[int, int]], [float]:

    >>> segments = np.array([[0] * 3 + [1] * 5 + [2] * 4,
    ...                      [4] * 4 + [5] * 5 + [6] * 3])
    >>> np.random.seed(0)
    >>> img = np.random.random(segments.shape + (3,)) * 255
    >>> features = np.random.random((segments.max() + 1, 15)) * 10
    >>> proba = np.random.random((segments.max() + 1, 2))
    >>> edges, weights = compute_edge_weights(segments)
    >>> edges.tolist()
    [[0, 1], [1, 2], [0, 4], [1, 4], [1, 5], [2, 5], [4, 5], [2, 6], [5, 6]]
    >>> np.round(weights, 2).tolist()
    [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
    >>> edges, weights = compute_edge_weights(segments, image=img,
    ...                                        edge_type='spatial')
    >>> np.round(weights, 3).tolist()
    [0.776, 0.69, 2.776, 0.853, 2.194, 0.853, 0.69, 2.776, 0.776]
    >>> edges, weights = compute_edge_weights(segments, image=img,
    ...                                        edge_type='color')
    >>> np.round(weights, 3).tolist()
    [0.06, 0.002, 0.0, 0.0, 0.0, 0.009, 0.0, 0.019, 0.044]
    >>> edges, weights = compute_edge_weights(segments, features=features,
    ...                                        edge_type='features')
    >>> np.round(weights, 3).tolist()
    [0.031, 0.005, 0.051, 0.032, 0.096, 0.013, 0.018, 0.033, 0.013]
    >>> edges, weights = compute_edge_weights(segments, proba=proba,
    ...                                        edge_type='model')
    >>> np.round(weights, 3).tolist()
    [0.0, 0.028, 1.122, 0.038, 0.117, 0.688, 0.487, 1.152, 0.282]
    """
    logging.debug('extraction segment connectivity...')
    _, edges = get_vertexes_edges(segments)
    # convert variables
    edges = np.array(edges, dtype=np.int32)
    logging.debug('graph edges %s', repr(edges.shape))

    if edge_type.startswith('model'):
        assert proba is not None
        metric = edge_type.split('_')[-1] if '_' in edge_type else 'lT'
        edge_weights = compute_edge_model(edges, proba, metric)
    elif edge_type == 'color':
        assert image is not None
        # {'color': ['mean', 'median']}
        image_float = np.array(image, dtype=float)
        if np.max(image) > 1:
            image_float /= 255.
        color, _ = seg_fts.compute_selected_features_img2d(
            image_float, segments, {'color': ['mean']})
        vertex_1 = color[edges[:, 0]]
        vertex_2 = color[edges[:, 1]]
        dist = metrics.pairwise.paired_manhattan_distances(vertex_1, vertex_2)
        weights = dist.astype(float) / (2 * np.std(dist)**2)
        edge_weights = np.exp(-weights)
    elif edge_type == 'features':
        assert features is not None
        features_norm = preprocessing.StandardScaler().fit_transform(features)
        vertex_1 = features_norm[edges[:, 0]]
        vertex_2 = features_norm[edges[:, 1]]
        dist = metrics.pairwise.paired_euclidean_distances(vertex_1, vertex_2)
        weights = dist.astype(float) / (2 * np.std(dist)**2)
        edge_weights = np.exp(-weights)
    else:
        edge_weights = np.ones(len(edges))

    edge_weights = np.array(edge_weights, dtype=float)
    if edge_type in ['model', 'features', 'color', 'spatial']:
        centres = seg_spx.superpixel_centers(segments)
        spatial = compute_spatial_dist(centres, edges, relative=True)
        edge_weights /= spatial
    return edges, edge_weights