async def get_segmentation_map(file: bytes = File(...)):
    """Get segmentation maps from image file"""
    segmented_image = get_segments(model, file)
    with tempfile.NamedTemporaryFile(mode="w+b", suffix=".png",
                                     delete=False) as outfile:
        segmented_image.save(outfile)
        return FileResponse(outfile.name, media_type="image/png")
def start(image_name, output_name):
    image = Image.open(image_name)
    segments = segmentation.get_segments(image, THRESHOLD, MIN_SIZE)
    exp = Expressionist(segments)
    exp.manipulate(image.size).save(output_name)
    segments.sort(key = lambda s: s.size)
    l = len(segments)
Beispiel #3
0
def evaluate(datos, ponderaciones, silencios, carga_computacional=1,tipo_clustering="KMEANS", ncluster = 3, metrica = "SIL"):
    '''
    Dado un clasificador y un conjunto de train y test devuelve su tasa de acierto en test.
    '''
    global light_segs
    
    fecha = False
    if len(ponderaciones) == 0:
        return 0.0
    ligero = np.sign(carga_computacional) < 0
    carga_computacional = abs(carga_computacional)
    
    if carga_computacional < 1:
        datos = datos.sample(int(datos.shape[0] * carga_computacional))
        datos = datos.sort_index()
        carga_computacional = 1
        fecha = True
        
    if carga_computacional>=1:
        if not ligero:
            segmentos, _ = sg.segmentate_data_frame(df=datos, montecarlo=1, min_size=4, silence=silencios, 
                                                vector_importancias=ponderaciones, verbose=False)
            mean = len(sg.ultra_light_segmentation(datos, fecha=fecha))/2
        else:
            if len(light_segs) == 0:
                light_segs = sg.ultra_light_segmentation(datos, fecha=fecha) 
                
            segmentos = light_segs
            mean = len(segmentos)/2
            #mean = int(datos.shape[0]/100)
    
        if carga_computacional == 1:
            segmentados = cl.apply_segmentation(datos, segmentos, silencios, ponderaciones, fecha)
            
            if segmentados.shape[0] <= 6:
                return 0.0
            else:
                std = np.sqrt(mean)
                nsegs=[]
                for i in range(segmentados.shape[0]):
                    nsegs.append([i,i+1])
                segmentos = sg.join_segments(data=segmentados, o_segments=nsegs, distance=sg.interpretable_distance, threshold=0.5, minimum_size=1,silence=silencios, vector_importancias=ponderaciones)[0]
                segmentados = cl.apply_segmentation(segmentados, segmentos, silencios, ponderaciones, fecha)

                return cl.hopkins_statistic(cl.filter_numerical(segmentados),m=int(segmentados.shape[0]*0.5))* normal_correction(mean, std, len(segmentados))
            
        elif carga_computacional==2:
            if tipo_clustering == "DTW":
                segmentados = sg.get_segments(datos, segmentos)
                asignaciones = pam.kmedoids(segmentados, n_clus = ncluster)
                segments_df = cl.apply_clustering(datos, segmentos, asignaciones[1], asignaciones[2])
            elif tipo_clustering == "KMEANS":
                segments_df = cl.full_clustering(datos, segmentos, n_clus = ncluster, silencio=silencios, pesos = ponderaciones, normalizar=False)
                
            if metrica == "SIL":    
                return cl.sil_metric(segments_df[0])
            elif metrica == "ENTROPY":
                return entropy_metric(segments_df)
Beispiel #4
0
    rgb = cv2.cvtColor(camera_frame, cv2.COLOR_BGR2BGRA)
    cv2.imshow('camera_frame', rgb)
    if frame_time - last_frame_time > FRAME_FREQUENCY:
        cropped = frame[300:600, 400:900]
        gray_cropped = Image.fromarray(cropped).convert('L')
        row_avg = numpy.average(numpy.asarray(gray_cropped))
        avg = numpy.average(row_avg)
        print avg
        if avg > 165:
            count += 1
        if avg > 165 and count > 20:
            """
            thread this!
            """
            cv2.imwrite('capture.png', cropped)
            resized_images, segments, images = get_segments('capture.png')
            print segments
            segment_boxes = segments
            for i in xrange(len(images)):
                cv2.imwrite('segment-' + str(i) + '.png',
                            numpy.asarray(images[i]))
            last_frame_time = frame_time
            count = 0
            net = network.Network([784, 30, 13])
            net.load_parameters()
            for i in resized_images:
                print net.recognize(i)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
Beispiel #5
0
def get_segmentation_map(file: bytes = File(...)):
    """Get segmentation maps from image file"""
    segmented_image = get_segments(model, file)
    bytes_io = io.BytesIO()
    segmented_image.save(bytes_io, format="PNG")
    return Response(bytes_io.getvalue(), media_type="image/png")
Beispiel #6
0
def get_segmentation_map(file: bytes = File(...)):
    """Obtenemos el mapa de segmentación de la imagen"""
    segmented_image = get_segments(model, file)
    bytes_io = io.BytesIO()
    segmented_image.save(bytes_io, format="PNG")
    return Response(bytes_io.getvalue(), media_type="image/png")