Beispiel #1
0
dirName = "sub04_results"
try:
    # Create target directory
    os.mkdir(dirName)
    print("Directory ", dirName, " was created")
except FileExistsError:
    print("Directory", dirName, " already exists")
os.mkdir(dirName + "//training_results")
os.mkdir(dirName + "//validation_results")
os.mkdir(dirName + "//test_results")

debug = False  # keep it False - othewise it does not use the trained network to predict
make_predictions(valimpaths,
                 valmaskpaths,
                 dirName,
                 mode='val',
                 cnn=cnn,
                 halfsize=halfsize,
                 debug=debug)
make_predictions(testimpaths,
                 testmaskpaths,
                 dirName,
                 mode='test',
                 cnn=cnn,
                 halfsize=halfsize,
                 debug=debug)
make_predictions(trainimpaths,
                 trainmaskpaths,
                 dirName,
                 mode='train',
                 cnn=cnn,
Beispiel #2
0
dirName = "sub10_results"
try:
    # Create target directory
    os.mkdir(dirName)
    print("Directory ", dirName, " was created")
except FileExistsError:
    print("Directory", dirName, " already exists")
os.mkdir(dirName + "//training_results")
os.mkdir(dirName + "//validation_results")
os.mkdir(dirName + "//test_results")

debug = False  # keep it False - othewise it does not use the trained network to predict
make_predictions(valimpaths,
                 valmaskpaths,
                 dirName,
                 mode='val',
                 cnn=cnn,
                 patchsize=halfsize,
                 debug=debug)  # patchsize=halfsize when data augmenting
make_predictions(testimpaths,
                 testmaskpaths,
                 dirName,
                 mode='test',
                 cnn=cnn,
                 patchsize=halfsize,
                 debug=debug)
make_predictions(trainimpaths,
                 trainmaskpaths,
                 dirName,
                 mode='train',
                 cnn=cnn,