Beispiel #1
0
class SemEnv(gym.Env):
    metadata = {'render.modes': ['human']}

    def __init__(self, _type='DQN', _minimax_rate=0):
        self._type = _type
        self._minimax_rate = _minimax_rate

        self.action_space = spaces.Discrete(BOARD_ROWS * BOARD_COLS)
        self.observation_space = spaces.Box(low=0,
                                            high=1,
                                            shape=(BOARD_ROWS, BOARD_COLS,
                                                   MAX_MOVES),
                                            dtype=np.uint8)
        #self.observation_space = spaces.Box(low=0, high=1, shape=(64, 64, MAX_MOVES), dtype=np.uint8)
        try:
            self.minimax_player = Player(
                _name="board_nextMoves_" + str(MAX_MOVES) + "_" +
                str(BOARD_ROWS) + "x" + str(BOARD_COLS) + "_MMPS",
                _player_type="Minimax")
        except:
            print("Minimax agent not loaded")
        self.rand = Player()
        self.agent_turn = 1

        self.board = Board()
        self.done = False
        self.padding = False
        self.minimax_test = False

        self.states_lst = []
        self.counter = 0

        self.reset()

    def step(self, action=-1):
        reward = 0
        #----------------- Monte Carlo's Step ------------------------------
        if self._type == 'Monte Carlo':
            if action != -1:
                if type(action) == int:
                    movePos = (int(action / BOARD_COLS),
                               int(action % BOARD_COLS))
                else:
                    movePos = action
                moveDone = self.board.make_move(movePos)

                win = self.board.check_win()
                if win >= 0:
                    reward = -1
                    self.done = True

                    return self.board.getHash(), reward, self.done, {}

                # if self.minimax_test:
                #     self.board.showBoard()

            else:
                if self.minimax_test:
                    botMove = self.minimax_player.choose_action(
                        self.board, player=-self.agent_turn)
                else:
                    botMove = self.rand.choose_action(self.board,
                                                      player=self.board.turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

                win = self.board.check_win()
                if win >= 0:
                    reward = self.board.turn
                    self.done = True
                    return self.board.getHash(), reward, self.done, {}

                # if self.minimax_test:
                #     self.board.showBoard()

            self.board.turn *= -1
            return self.board.getHash(), reward, self.done, {}

        #----------------- Monte Carlo's Step Test ------------------------------
        if self._type == 'Monte Carlo Test':
            #---------- Agent Move -----------------------------
            if action != -1:  # Action specified at step request
                if type(action) == int:
                    movePos = (int(action / BOARD_COLS),
                               int(action % BOARD_COLS))
                else:
                    movePos = action
                moveDone = self.board.make_move(movePos)
            else:  # Action not specified, random action taken
                botMove = self.rand.choose_action(self.board,
                                                  player=self.board.turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

            self.states_lst.append(self.board.state)
            win = self.board.check_win()
            if win != -1:
                reward = 1
                self.done = True

                return self.board.getHash(), reward, self.done, {}

            #--------- Random Bot Move -------------------------
            if np.random.rand() < self._minimax_rate:
                positions = self.board.availablePositions()
                botMove = self.minimax_player.choose_action(
                    self.board, player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))
            else:
                positions = self.board.availablePositions()
                botMove = self.rand.choose_action(self.board,
                                                  player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

            self.states_lst.append(self.board.state)
            win = self.board.check_win()
            if win != -1:
                reward = -1
                self.done = True

                # final_state = self.board.state
                # for s in self.states_lst:
                #     self.board.state = s
                #     self.board.showBoard()
                # self.board.state = final_state

                return self.board.getHash(), reward, self.done, {}

            return self.board.getHash(), reward, self.done, {}

        #-------------------- Q-learning Step ----------------------------------
        if self._type == "Q-learning":
            #---------- Agent Move -----------------------------
            #move_pos = (int(action / BOARD_COLS), int(action % BOARD_COLS))
            moveDone = self.board.make_move(action)

            if moveDone == 0:
                reward = -2
                self.done = True

                return self.board.getHash(), reward, self.done, {}

            win = self.board.check_win()
            if win != -1:
                reward = 1
                self.done = True

                return self.board.getHash(), reward, self.done, {}

            #--------- Random Bot Move -------------------------
            if np.random.rand() < 0.5:
                positions = self.board.availablePositions()
                botMove = self.minimax_player.choose_action(
                    self.board, player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))
            else:
                positions = self.board.availablePositions()
                botMove = self.rand.choose_action(self.board,
                                                  player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

            win = self.board.check_win()
            if win != -1:
                reward = -1
                self.done = True

                return self.board.getHash(), reward, self.done, {}

            return self.board.getHash(), reward, self.done, {}

        #-------------------- DQN SB's Step -----------------------------------
        if self._type == "DQN":
            #---------- Agent Move -----------------------------
            move_pos = (int(action / BOARD_COLS), int(action % BOARD_COLS))
            moveDone = self.board.make_move(move_pos)

            if moveDone == 0:
                reward = -2
                self.done = True

                return self.board.get_one_hot(
                    self.padding), reward, self.done, {}

            win = self.board.check_win()
            if win != -1:
                reward = 1
                self.done = True

                return self.board.get_one_hot(
                    self.padding), reward, self.done, {}

            #--------- Random Bot Move -------------------------
            if np.random.rand() < self._minimax_rate:
                #print("here")
                #self.board.showBoard()
                positions = self.board.availablePositions()
                botMove = self.minimax_player.choose_action(
                    self.board, player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))
                #self.board.showBoard()
            else:
                positions = self.board.availablePositions()
                botMove = self.rand.choose_action(self.board,
                                                  player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

            win = self.board.check_win()
            if win != -1:
                reward = -1
                self.done = True

                return self.board.get_one_hot(
                    self.padding), reward, self.done, {}

            # return self.board.state, reward, self.done, {}
            # return self.one_hot_encode(self.board.state), reward, self.done, {}
            return self.board.get_one_hot(self.padding), reward, self.done, {}
            #return canonic_state, reward, self.done, {}

        #-------------------- DQN SB's Step Test -----------------------------------
        if self._type == "DQN_test":
            #---------- Agent Move -----------------------------
            move_pos = (int(action / BOARD_COLS), int(action % BOARD_COLS))
            moveDone = self.board.make_move(move_pos)

            if moveDone == 0:
                reward = -2
                self.done = True

                return self.board.get_one_hot(
                    self.padding), reward, self.done, {}

            win = self.board.check_win()
            if win != -1:
                reward = 1
                self.done = True

                return self.board.get_one_hot(
                    self.padding), reward, self.done, {}

            #--------- Random Bot Move -------------------------
            if np.random.rand() < self._minimax_rate:
                positions = self.board.availablePositions()
                botMove = self.minimax_player.choose_action(
                    self.board, player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))
            else:
                positions = self.board.availablePositions()
                botMove = self.rand.choose_action(self.board,
                                                  player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

            win = self.board.check_win()
            if win != -1:
                reward = -1
                self.done = True

                return self.board.get_one_hot(
                    self.padding), reward, self.done, {}

            # return self.board.state, reward, self.done, {}
            # return self.one_hot_encode(self.board.state), reward, self.done, {}
            return self.board.get_one_hot(self.padding), reward, self.done, {}
            #return canonic_state, reward, self.done, {}

    def reset(self):
        self.board.reset()
        self.done = False
        self.states_lst = []

        if self.agent_turn == -1:
            if random.rand() < 0 and self._type == "DQN" and self.counter < 0:
                self.get_init_board()
                self.counter += 1
            else:
                botMove = self.rand.choose_action(self.board,
                                                  player=-self.agent_turn)
                moveDone = self.board.make_move((botMove[0], botMove[1]))

            self.board.turn = -1

        # if self.minimax_test:
        #     self.board.showBoard()

        # if np.random.choice(range(2)) == 1:
        # if self.agent_turn == -1:
        #     positions = self.board.availablePositions()
        #     botMove = self.rand_bot.choose_action(self.board, player = -self.agent_turn)
        #     moveDone = self.board.make_move((botMove[0], botMove[1]))

        # hash_state = self.board.getHash()
        # canonic_state = self.get_canonic_state(hash_state)
        # canonic_state = self.board.get_array_from_flat(canonic_state[0])
        return self.board.get_one_hot(self.padding)

    def render(self):
        self.board.showBoard()

    def possible_move_boards(self):
        positions = self.board.availablePositions()
        possible_Boards = []

        for p in positions:
            self.board.make_move(p)
            possible_Boards.append((self.board.getHash(), p))
            self.board.undo_move(p)

        return possible_Boards

    def set_state(self, state):
        return self.board.set_state(state)

    def get_symmetry(self, board_hash=-1):
        return self.board.get_symmetry(board_hash)

    def get_canonic_score(self, board_flat=-1):
        return self.board.get_canonic_score(board_flat)

        # Returns always the same state for all any symmetric states and a list of all those symmetric states
    def get_canonic_state(self, board_hash=-1):
        all_symmetry = self.get_symmetry(board_hash)
        all_canonic_score = [self.get_canonic_score(b) for b in all_symmetry]
        canonic_board_index = all_canonic_score.index(max(all_canonic_score))
        return all_symmetry[canonic_board_index], all_symmetry

    def get_canonic_state_mask(self, board_flat=-1):
        return self.board.get_canonic_state_mask(board_flat)

    def one_hot_encode(self, state):
        one_hot_board = np.zeros((MAX_MOVES, BOARD_ROWS, BOARD_COLS))
        for i in range(BOARD_ROWS):
            for j in range(BOARD_COLS):
                for m in range(MAX_MOVES + 1):
                    if state[i, j] == m + 1:
                        one_hot_board[m, i, j] = 1
                        break
        # print("------------------")
        # print(state)
        # print(one_hot_board)
        #padded_state = np.pad(one_hot_board, ((0, 0), (31, 30), (31, 31)),mode='constant', constant_values=(0))
        return one_hot_board

    def pad(self, state):
        padded_state = np.pad(state, ((0, 0), (31, 30), (30, 30)),
                              mode='constant',
                              constant_values=(0))
        print(padded_state)
        return padded_state.reshape(-1, BOARD_ROWS, BOARD_COLS, MAX_MOVES)

    def reshape_cnn(self, state):
        return state.reshape(-1, BOARD_ROWS, BOARD_COLS, MAX_MOVES)

    def get_init_board(self):
        done = False
        turn = 1
        moves_lst = []
        while not done:
            if np.random.rand() < 0.8:
                botMove = self.minimax_player.choose_action(self.board,
                                                            player=turn)
            else:
                botMove = self.rand.choose_action(self.board, player=turn)
            moveDone = self.board.make_move((botMove[0], botMove[1]))

            moves_lst.append(botMove)

            win = self.board.check_win()
            if win != -1:
                if turn == -1:
                    possible_steps_back = []
                    for i in range(len(moves_lst)):
                        if i % 2 != 0:
                            possible_steps_back.append(i)
                    steps_back = random.choice([1])
                    reversed_moves_lst = []
                    for move in reversed(moves_lst):
                        reversed_moves_lst.append(move)
                    #print(len(moves_lst))
                    #print(moves_lst)
                    if turn == 1:
                        steps_back += 1
                    for i in range(steps_back):
                        self.board.undo_move(reversed_moves_lst[i])
                    done = True
                else:
                    self.board.reset()
                    moves_lst = []
                    turn = 1

            turn *= -1
        #self.board.showBoard()
        return self.board.get_one_hot(self.padding)
Beispiel #2
0
        inputs = keras.Input(shape=((3, 4, 1)))
        x = Dense(32, activation="relu", name="dense_1")(inputs)
        y = Dense(32, activation="relu", name="dense_2")(x)
        outputs = Dense(10, activation="softmax", name="predictions")(y)
        self.model = keras.Model(inputs=inputs, outputs=outputs)

        # self.model = Sequential()
        # self.model.add(Dense(32, activation='relu', kernel_initializer='he_normal'))
        # self.model.add(Dense(32, activation='relu', kernel_initializer='he_normal'))
        # self.model.add(Dense(12, activation='sigmoid'))
        # compile the model
        #model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    def predict(self, board):
        return self.model.predict(board)

    def _call(self, inputs):
        print(input)
        x = self.model.layers[0](inputs)
        print(x)
        y = self.model.layers[1](x)
        return self.model.layers[2](y)


ga = Gen_Agent()
#ga.model = ga.model.layers.GaussianNoise()
board = Board()
board.make_move((0, 0))
print(ga.predict(board.get_one_hot().reshape(-1, 3, 4, 1)))
print(GaussianNoise(ga.model))
print(ga.predict(board.get_one_hot().reshape(-1, 3, 4, 1)))