Option('gethidrep', 'whether to dump hidden rep after loading [%default]', False, converter=int), Option('pretrain', 'whether to dump matrices and configs without doing anything [%default]', True, converter=int), Option('finetune', 'whether to do fine tuning after initializing/learning weights [%default]', False, converter=int), Option('finetune_epochs', 'epochs for fine-tuning [%default]', 100, converter=int), Option('finetune_rprop', 'whether to use rprop for fine-tuning [%default]', 1, converter=int), Option('finetune_batch_size', 'size of minibatches for fine-tuning [%default]', 1000, converter=int), Option('finetune_softmax', 'whether to use softmax for fine-tuning [%default]', 1, converter=int), Option('finetune_learnrate', 'learnrate for finetuning [%default]', 0.01, converter=float), Option('finetune_cost', 'weight decay for finetuning [%default]', 0.001, converter=float), Option('finetune_momentum', 'momentum for finetuning when backprop used [%default]', 0.5, converter=float), Option('finetune_onlylast', 'epochs where only not-pretrained upper layer is updated [%default]', 0, converter=int), Option('finetune_online_learning', 'online learning [%default]', '0', converter=int), ] cfg = Config(options, usage = "usage: %prog [options]") try: sys.path.insert(0,os.path.join(os.getenv('HOME'),'bin')) import optcomplete optcomplete.autocomplete(cfg._parser) except ImportError: pass cfg.grab_from_argv(sys.argv) # to fetch the config file name try: os.mkdir(cfg.workdir) except:pass cfg.config_file = os.path.join(cfg.workdir, "pyrbm.ini")
Option('finetune_momentum', 'momentum for finetuning when backprop used [%default]', 0.5, converter=float), Option( 'finetune_onlylast', 'epochs where only not-pretrained upper layer is updated [%default]', 0, converter=int), Option('finetune_online_learning', 'online learning [%default]', '0', converter=int), ] cfg = Config(options, usage="usage: %prog [options]") try: sys.path.insert(0, os.path.join(os.getenv('HOME'), 'bin')) import optcomplete optcomplete.autocomplete(cfg._parser) except ImportError: pass cfg.grab_from_argv(sys.argv) # to fetch the config file name try: os.mkdir(cfg.workdir) except: pass cfg.config_file = os.path.join(cfg.workdir, "pyrbm.ini")
cp.rnd_binarize(self.v) if __name__=='__main__': loc = locals() options = [ Option('device', 'GPU device to use [%default]', 0, short_name='d', converter=int), Option('chains', 'number of markov chains [%default]', 512, short_name='c', converter=int), Option('steps', 'number of annealing steps (don\'t change this at the moment [%default]', 145000, short_name='s', converter=int), Option('postfix', 'index/postfix of file [%default]', "pretrain", short_name='i', converter=str), Option('utype', 'type of visible units (cont/gaussian/binary) [%default]', 'binary.binary', short_name='V', converter=lambda x: [eval("UnitType."+y, loc) for y in x.split(".")]), Option('path', 'Path to weights [%default]', '.', short_name='p', converter=str), ] cfg = Config(options, usage = "usage: %prog [options]") try: sys.path.insert(0,os.path.join(os.getenv('HOME'),'bin')) import optcomplete optcomplete.autocomplete(cfg._parser) except ImportError: pass cfg.grab_from_argv(sys.argv) cfg.batchsize=-1 # not used, only compatibility with dataset classes #load pickle with rbm cfg fn = os.path.join(cfg.path, "info-0.pickle") with open(fn,"r") as f: rbmcfg=cPickle.load(f)