def gt_cb(self, msg):
        labels = []
        for i, (n,p) in enumerate(zip(msg.name, msg.pose)):
            if not (n in self._models):
                continue
            pos = [p.position.x, p.position.y, p.position.z + 0.3]
            label = make_label(n, pos, i, color=[0.0,1.0,0.0])
            labels.append(label)

        for l in labels:
            self._gt_pub.publish(l)
def CB_msgPCL(msgPCL):
    """
    ROS "/sensor_stick/point_cloud" subscription Callback handler
    Handle the PointCloud ROS msg received by the "/sensor_stick/point_cloud"
    This function is almost entirely unpacking/packing ROS messages and publishing.
    The the unpacked input pcl is processed by Process_rawPCL(pclpcRawIn)
    which returns the values that need to be packed and published
    :param msgPCL:
    :return:
    """
    global g_callBackCount
    g_callBackCount += 1

    if (g_callBackCount % g_callBackSkip != 0):
        return;

    print "\rCBCount= {:05d}".format(g_callBackCount),
    sys.stdout.flush()

    DebugDumpMsgPCL(msgPCL)

    # Extract pcl Raw from Ros msgPCL
    pclpcRawIn = pcl_helper.ros_to_pcl(msgPCL)

    #------- PROCESS RAW PCL-------------------------
    labelRecs, pclpcObjects, pclpcTable, pclpcClusters = Process_rawPCL(pclpcRawIn)

    detected_objects_labels = [] # For ros loginfo only
    detected_objects = [] # For publish - for PROJ3!

    for (labelText, labelPos, labelIndex) in labelRecs:
        detected_objects_labels.append(labelText)
        g_object_markers_pub.publish(marker_tools.make_label(labelText, labelPos, labelIndex ))
        # Add  detected object to the list of detected objects.
        do = DetectedObject()
        do.label = labelText
        do.cloud = pclpcClusters
        detected_objects.append(do)

    rospy.loginfo('Detected {} objects: {}'.format(len(detected_objects_labels), detected_objects_labels))

    # Package Processed pcls into Ros msgPCL
    msgPCLObjects = pcl_helper.pcl_to_ros(pclpcObjects)
    msgPCLTable = pcl_helper.pcl_to_ros(pclpcTable)
    msgPCLClusters = pcl_helper.pcl_to_ros(pclpcClusters)

    # Publish everything
    # This is the output you'll need to complete the upcoming project!
    g_detected_objects_pub.publish(detected_objects) # THIS IS THE CRUCIAL STEP FOR PROJ3
    g_pcl_objects_pub.publish(msgPCLObjects)
    g_pcl_table_pub.publish(msgPCLTable)
    g_pcl_cluster_pub.publish(msgPCLClusters)
def pcl_callback(pcl_msg):
    cloud = ros_to_pcl(pcl_msg)
    cloud = pipeline.passth(cloud)
    cloud = pipeline.passth(cloud, axis='y', amin=-0.45, amax=0.45)
    cloud = pipeline.denoise(cloud)
    filtered = pipeline.voxel(cloud)

    table_points = pipeline.plane_points(filtered)
    table_cloud = filtered.extract(table_points, negative=False)
    obj_cloud = filtered.extract(table_points, negative=True)

    pcl_objects_pub.publish(pcl_to_ros(obj_cloud))
    pcl_table_pub.publish(pcl_to_ros(table_cloud))

    cluster_ix = pipeline.cluster_ix(obj_cloud)

    pcl_cluster_pub.publish(
        pcl_to_ros(pipeline.color_clusters(obj_cloud, cluster_ix)))

    detected_objects = []

    for i, ixs in enumerate(cluster_ix):
        pcl_data = obj_cloud.extract(ixs)
        ros_data = pcl_to_ros(pcl_data)
        feature = np.concatenate(
            (features.compute_color_histograms(ros_data), ))
        prediction = clf.predict(scaler.transform(feature.reshape(1, -1)))
        label = encoder.inverse_transform(prediction)[0]

        label_pos = list(next(pc2.read_points(ros_data))[:3])
        label_pos[2] += .4
        object_markers_pub.publish(make_label(label, label_pos, i))

        do = DetectedObject()
        do.label = label
        do.cloud = ros_data
        detected_objects.append(do)

    detected_objects_pub.publish(detected_objects)
def pcl_callback(pcl_msg):
    rospy.loginfo('Begin pcl_callback...')

    # Exercise-2 TODOs:

    # DONE: Convert ROS msg to PCL data(PointXYZRGB)
    cloud = ros_to_pcl(pcl_msg)

    # DONE: Voxel Grid Downsampling
    cloud_filtered = voxel_filter(cloud)

    # DONE: PassThrough Filter
    # ざっくり z軸でテーブルの上だけを切り取る
    cloud_filtered = pass_through_filter(cloud_filtered,
                                         filter_axis='z',
                                         axis_limit=(0.6, 1.1))
    # テーブルの手前もオブジェクトに見えるので、切り取る
    cloud_filtered = pass_through_filter(cloud_filtered,
                                         filter_axis='y',
                                         axis_limit=(-10.0, -1.39))

    # DONE: RANSAC Plane Segmentation
    inliers, _ = ransac_plane_segmentation(cloud_filtered)

    # DONE: Extract inliers and outliers
    # フィルタでオブジェクト群とテーブルを分離する(結果は ransanc の distance に依存する)
    cloud_objects = cloud_filtered.extract(inliers, negative=True)
    rospy.loginfo(' cloud_objects: %d' % (cloud_objects.size))

    # DONE: Euclidean Clustering
    # オブジェクト毎に分割する
    cluster_indices, white_cloud = euclidean_clustering(cloud_objects,
                                                        tolerance=0.02,
                                                        cluster_range=(100,
                                                                       15000))
    rospy.loginfo(' cluster_indices: %d, white_cloud: %d ' %
                  (len(cluster_indices), white_cloud.size))

    rospy.loginfo('DONE Exercise-2')

    # Exercise-3 TODOs:

    # Classify the clusters! (loop through each detected cluster one at a time)
    detected_objects_labels = []
    detected_objects = []

    # 各オブジェクトを認識する
    for index, pts_list in enumerate(cluster_indices):
        #rospy.loginfo('  Detecting... : %d' % (index))
        # Grab the points for the cluster from the extracted outliers (cloud_objects)
        pcl_cluster = cloud_objects.extract(pts_list)

        # DONE: convert the cluster from pcl to ROS using helper function
        ros_cluster = pcl_to_ros(pcl_cluster)

        # Extract histogram features
        # DONE: complete this step just as is covered in capture_features.py
        # Compute the associated feature vector
        #rospy.loginfo('  type : %s' % (type(ros_cluster)))
        chists = compute_color_histograms(ros_cluster, using_hsv=True)
        normals = get_normals(ros_cluster)
        nhists = compute_normal_histograms(normals)
        feature = np.concatenate((chists, nhists))

        # Make the prediction, retrieve the label for the result
        # and add it to detected_objects_labels list
        prediction = clf.predict(scaler.transform(feature.reshape(1, -1)))
        label = encoder.inverse_transform(prediction)[0]
        detected_objects_labels.append(label)

        # Publish a label into RViz
        # ラベルを publish する
        label_pos = list(white_cloud[pts_list[0]])
        label_pos[2] += .4
        object_markers_pub.publish(make_label(label, label_pos, index))

        # Add the detected object to the list of detected objects.
        do = DetectedObject()
        do.label = label
        do.cloud = ros_cluster
        detected_objects.append(do)

    rospy.loginfo('Detected {} objects: {}'.format(
        len(detected_objects_labels), detected_objects_labels))

    # Publish the list of detected objects
    # This is the output you'll need to complete the upcoming project!
    #
    # 認識したオブジェクトを publish する
    detected_objects_pub.publish(detected_objects)
Beispiel #5
0
def pcl_callback(pcl_msg):
    # Exercise-2 TODOs:
    detected_objects_labels = []
    detected_objects = []

    # TODO: Convert ROS msg to PCL data
    cloud = ros_to_pcl(pcl_msg)

    # TODO: Statistical Outlier Filtering
    outlier_filter = cloud.make_statistical_outlier_filter()

    # Set the number of neighboring points to analyze for any given point
    outlier_filter.set_mean_k(8)
    # Set threshold scale factor
    x = 0.3
    # Any point with a mean distance larger than global (mean distance+x*std_dev) will be considered outlier
    outlier_filter.set_std_dev_mul_thresh(x)
    cloud_filtered = outlier_filter.filter()

    vox = cloud_filtered.make_voxel_grid_filter()
    LEAF_SIZE = 0.005
    vox.set_leaf_size(LEAF_SIZE, LEAF_SIZE, LEAF_SIZE)
    cloud_filtered = vox.filter()

    # TODO: PassThrough Filter
    passthrough = cloud_filtered.make_passthrough_filter()
    filter_axis = 'z'
    passthrough.set_filter_field_name(filter_axis)
    axis_min = 0.6
    axis_max = 1.1
    passthrough.set_filter_limits(axis_min, axis_max)
    cloud_filtered = passthrough.filter()

    # PassThrough filter 0.34 < x < 1.0
    px = cloud_filtered.make_passthrough_filter()
    px.set_filter_field_name('x')
    px.set_filter_limits(0.34, 1.0)
    cloud_filtered = px.filter()

    # TODO: RANSAC Plane Segmentation
    seg = cloud_filtered.make_segmenter()
    seg.set_model_type(pcl.SACMODEL_PLANE)
    seg.set_method_type(pcl.SAC_RANSAC)
    max_distance = 0.01
    seg.set_distance_threshold(max_distance)
    inliers, coefficients = seg.segment()

    # TODO: Extract inliers and outliers
    extracted_inliers = cloud_filtered.extract(inliers, negative=False)
    extracted_outliers = cloud_filtered.extract(inliers, negative=True)

    # TODO: Euclidean Clustering
    white_cloud = XYZRGB_to_XYZ(extracted_outliers)
    tree = white_cloud.make_kdtree()
    ec = white_cloud.make_EuclideanClusterExtraction()
    ec.set_ClusterTolerance(0.02)
    ec.set_MinClusterSize(40)
    ec.set_MaxClusterSize(4000)
    # Search the k-d tree for clusters
    ec.set_SearchMethod(tree)
    # Extract indices for each of the discovered clusters
    cluster_indices = ec.Extract()

    # TODO: Create Cluster-Mask Point Cloud to visualize each cluster separately
    cluster_color = get_color_list(len(cluster_indices))
    color_cluster_point_list = []
    for j, indices in enumerate(cluster_indices):
        # Grab the points for the cluster from the extracted outliers (cloud_objects)
        pcl_cluster = extracted_outliers.extract(indices)
        # TODO: convert the cluster from pcl to ROS using helper function
        ros_cluster = pcl_to_ros(pcl_cluster)
        # Extract histogram features
        # TODO: complete this step just as is covered in capture_features.py
        chists = compute_color_histograms(ros_cluster, using_hsv=True)
        normals = get_normals(ros_cluster)
        nhists = compute_normal_histograms(normals)
        feature = np.concatenate((chists, nhists))

        # Make the prediction, retrieve the label for the result
        # and add it to detected_objects_labels list
        prediction = clf.predict(scaler.transform(feature.reshape(1, -1)))
        label = encoder.inverse_transform(prediction)[0]
        detected_objects_labels.append(label)

        # Publish a label into RViz
        label_pos = list(white_cloud[indices[0]])
        label_pos[2] += .4
        object_markers_pub.publish(make_label(label, label_pos, j))

        # Add the detected object to the list of detected objects.
        do = DetectedObject()
        do.label = label
        do.cloud = ros_cluster
        detected_objects.append(do)

    rospy.loginfo('Detected {} objects: {}'.format(
        len(detected_objects_labels), detected_objects_labels))

    # Publish the list of detected objects
    # This is the output you'll need to complete the upcoming project!
    detected_objects_pub.publish(detected_objects)

    #Create new cloud containing all clusters, each with unique color
    #cluster_cloud = pcl.PointCloud_PointXYZRGB()
    #cluster_cloud.from_list(color_cluster_point_list)
    #print color_cluster_point_list
    # TODO: Convert PCL data to ROS messages
    ros_cloud_objects = pcl_to_ros(extracted_outliers)
    ros_cloud_table = pcl_to_ros(extracted_inliers)
    #ros_cluster_cloud = pcl_to_ros(cluster_cloud)

    # TODO: Publish ROS messages
    pcl_objects_pub.publish(ros_cloud_objects)
    pcl_table_pub.publish(ros_cloud_table)
    #pcl_cluster_pub.publish(ros_cluster_cloud)

    # Suggested location for where to invoke your pr2_mover() function within pcl_callback()
    # Could add some logic to determine whether or not your object detections are robust
    # before calling pr2_mover()
    try:
        pr2_mover(detected_objects)
    except rospy.ROSInterruptException:
        pass
Beispiel #6
0
def callback(pcl_msg):
    """Callback function for your Point Cloud Subscriber"""
    # Convert ROS msg to PCL data
    pcl_data = ros_to_pcl(pcl_msg)

    # Voxel Grid Downsampling
    vox = pcl_data.make_voxel_grid_filter()
    leaf_size = 0.005
    vox.set_leaf_size(leaf_size, leaf_size, leaf_size)

    pcl_data_filtered = vox.filter()

    # PassThrough Filter
    passthrough = pcl_data_filtered.make_passthrough_filter()
    filter_axis = 'z'
    passthrough.set_filter_field_name(filter_axis)
    axis_min = 0.6
    axis_max = 1.1
    passthrough.set_filter_limits(axis_min, axis_max)

    pcl_data_filtered = passthrough.filter()

    passthrough = pcl_data_filtered.make_passthrough_filter()
    filter_axis = 'y'
    passthrough.set_filter_field_name(filter_axis)
    axis_min = -0.55
    axis_max = 0.55
    passthrough.set_filter_limits(axis_min, axis_max)

    pcl_data_filtered = passthrough.filter()

    # RANSAC Plane Segmentation
    seg = pcl_data_filtered.make_segmenter()

    seg.set_model_type(pcl.SACMODEL_PLANE)
    seg.set_method_type(pcl.SAC_RANSAC)
    max_distance = 0.01
    seg.set_distance_threshold(max_distance)

    inliers, coefficients = seg.segment()

    # Extract inliers and outliers
    cloud_table = pcl_data_filtered.extract(inliers, negative=False)
    cloud_objects = pcl_data_filtered.extract(inliers, negative=True)

    # Euclidean Clustering
    white_cloud = XYZRGB_to_XYZ(cloud_objects)
    tree = white_cloud.make_kdtree()

    # Create Cluster-Mask Point Cloud to visualize each cluster separately
    ec = white_cloud.make_EuclideanClusterExtraction()
    ec.set_ClusterTolerance(0.02)
    ec.set_MinClusterSize(100)
    ec.set_MaxClusterSize(25000)
    ec.set_SearchMethod(tree)
    cluster_indices = ec.Extract()

    # Assign a color corresponding to each segmented object in scene
    cluster_color = get_color_list(len(cluster_indices))
    color_cluster_point_list = []
    for j, indices in enumerate(cluster_indices):
        for i, indice in enumerate(indices):
            color_cluster_point_list.append([
                white_cloud[indice][0], white_cloud[indice][1],
                white_cloud[indice][2],
                rgb_to_float(cluster_color[j])
            ])

    # Create new cloud containing all clusters, each with unique color
    cluster_cloud = pcl.PointCloud_PointXYZRGB()
    cluster_cloud.from_list(color_cluster_point_list)

    # Convert PCL data to ROS messages
    ros_cloud_objects = pcl_to_ros(cloud_objects)
    ros_cloud_table = pcl_to_ros(cloud_table)
    ros_cluster_cloud = pcl_to_ros(cluster_cloud)

    # Publish ROS messages
    pcl_objects_pub.publish(ros_cloud_objects)
    pcl_table_pub.publish(ros_cloud_table)
    pcl_cluster_pub.publish(ros_cluster_cloud)
    collision_pub.publish(ros_cloud_table)

    # classification
    detected_objects_labels = []
    detected_objects = []
    for index, pts_list in enumerate(cluster_indices):
        # Grab the points for the cluster
        pcl_cluster = cloud_objects.extract(pts_list)
        # convert the cluster from pcl to ROS using helper function
        ros_cluster_cloud = pcl_to_ros(pcl_cluster)

        # Extract histogram features
        color_hists = compute_color_histograms(ros_cluster_cloud,
                                               using_hsv=True)
        normal_hists = compute_normal_histograms(
            get_normals(ros_cluster_cloud))

        feature = np.concatenate((color_hists, normal_hists))

        # Make the prediction, retrieve the label for the result
        # and add it to detected_objects_labels list
        prediction = clf.predict(scaler.transform(feature.reshape(1, -1)))
        label = encoder.inverse_transform(prediction)[0]
        detected_objects_labels.append(label)

        # Publish a label into RViz
        label_pos = list(white_cloud[pts_list[0]])
        label_pos[2] += .4
        object_markers_pub.publish(make_label(label, label_pos, index))

        # Add the detected object to the list of detected objects.
        do = DetectedObject()
        do.label = label
        do.cloud = ros_cluster_cloud
        detected_objects.append(do)

    detected_objects_pub.publish(detected_objects)
    rospy.loginfo('Detected {} objects: {}'.format(
        len(detected_objects_labels), detected_objects_labels))
def pcl_callback(pcl_msg):
    rospy.loginfo('Begin pcl_callback...')

    # Exercise-2 TODOs:

    # DONE: Convert ROS msg to PCL data(PointXYZRGB)
    cloud = ros_to_pcl(pcl_msg)

    # DONE: Voxel Grid Downsampling
    cloud_filtered = voxel_filter(cloud)

    # DONE: PassThrough Filter
    # Assign axis and range to the passthrough filter object.
    cloud_filtered = pass_through_filter(cloud_filtered,
                                         filter_axis='z',
                                         axis_limit=(0.6, 1.1))
    # Cut off the near side of the table too.
    cloud_filtered = pass_through_filter(cloud_filtered,
                                         filter_axis='y',
                                         axis_limit=(-10.0, -1.39))

    # DONE: RANSAC Plane Segmentation
    inliers, _ = ransac_plane_segmentation(cloud_filtered)

    # DONE: Extract inliers and outliers
    cloud_table = cloud_filtered.extract(inliers, negative=False)
    cloud_objects = cloud_filtered.extract(inliers, negative=True)
    rospy.loginfo(' cloud_objects: %d' % (cloud_objects.size))

    # DONE: Euclidean Clustering
    cluster_indices, white_cloud = euclidean_clustering(cloud_objects,
                                                        tolerance=0.02,
                                                        cluster_range=(100,
                                                                       15000))
    rospy.loginfo(' cluster_indices: %d, white_cloud: %d ' %
                  (len(cluster_indices), white_cloud.size))

    # DONE: Create Cluster-Mask Point Cloud to visualize each cluster separately
    cluster_cloud = create_colored_cluster_cloud(cluster_indices, white_cloud)
    rospy.loginfo(' colored cluster: %d' % (cluster_cloud.size))

    # DONE: Convert PCL data to ROS messages
    ros_cloud_objects = pcl_to_ros(cloud_objects)
    ros_cloud_table = pcl_to_ros(cloud_table)
    ros_cluster_cloud = pcl_to_ros(cluster_cloud)

    # DONE: Publish ROS messages
    rospy.loginfo(' Publish to objects')
    pcl_objects_pub.publish(ros_cloud_objects)

    rospy.loginfo(' Publish to table')
    pcl_table_pub.publish(ros_cloud_table)

    rospy.loginfo(' Publish to cluster_cloud')
    pcl_cluster_pub.publish(ros_cluster_cloud)

    rospy.loginfo('DONE Exercise-2')

    # Exercise-3 TODOs:

    # Classify the clusters! (loop through each detected cluster one at a time)
    detected_objects_labels = []
    detected_objects = []

    # Object recognition
    for index, pts_list in enumerate(cluster_indices):
        #rospy.loginfo('  Detecting... : %d' % (index))
        # Grab the points for the cluster from the extracted outliers (cloud_objects)
        pcl_cluster = cloud_objects.extract(pts_list)

        # DONE: convert the cluster from pcl to ROS using helper function
        ros_cluster = pcl_to_ros(pcl_cluster)

        # Extract histogram features
        # DONE: complete this step just as is covered in capture_features.py
        # Compute the associated feature vector
        #rospy.loginfo('  type : %s' % (type(ros_cluster)))
        chists = compute_color_histograms(ros_cluster, using_hsv=True)
        normals = get_normals(ros_cluster)
        nhists = compute_normal_histograms(normals)
        feature = np.concatenate((chists, nhists))

        # Make the prediction, retrieve the label for the result
        # and add it to detected_objects_labels list
        prediction = clf.predict(scaler.transform(feature.reshape(1, -1)))
        label = encoder.inverse_transform(prediction)[0]
        detected_objects_labels.append(label)

        # Publish a label into RViz
        label_pos = list(white_cloud[pts_list[0]])
        label_pos[2] += .4
        object_markers_pub.publish(make_label(label, label_pos, index))

        # Add the detected object to the list of detected objects.
        do = DetectedObject()
        do.label = label
        do.cloud = ros_cluster
        detected_objects.append(do)

    rospy.loginfo('Detected {} objects: {}'.format(
        len(detected_objects_labels), detected_objects_labels))

    # Publish the list of detected objects
    # This is the output you'll need to complete the upcoming project!
    detected_objects_pub.publish(detected_objects)