Beispiel #1
0
def bigram_model():
    X_train, y_train, X_test, y_test = Sentences(
        n_sentences=1000).train_test_split_bigram()
    model = LogisticRegression()
    model.fit(X_train.transpose(), y_train)
    print("Bigram model test accuracy: %f" %
          model.score(X_test.transpose(), y_test))
Beispiel #2
0
def build_doc_vector(dir_name, model, build_option, process_option=ProcessOption(), \
    save=True, save_file="doc_vector.bin", \
    to_normalize = False, to_scale = False, cluster_factor=20, num_cpus=-2):
    sentences = Sentences(dir_name)
    docs = sentences.paragraph_iterator()
    doc_num = sentences.doc_num
    stop_words = set(stopwords.words("english"))
    tknzr = TweetTokenizer(preserve_case=False)
    post_docs = util.process_sentences(docs, tknzr, process_option, stop_words)
    if build_option == 1:  # average
        doc_vector = build_average_dv(post_docs, doc_num, model, save,
                                      save_file)
    elif build_option == 2:  # cluster
        doc_vector = build_av_tf_idf_dv(post_docs, doc_num, model, save,
                                        save_file)
    else:
        doc_vector = build_cluster_dv(post_docs, doc_num, model,
                                      cluster_factor, num_cpus, save,
                                      save_file)

    if (normalize):
        doc_vector = normalize(doc_vector, copy=False)
    if (scale):
        doc_vector = scale(doc_vector, copy=True)

    return doc_vector


# "/Users/Crazyconv/Conv/DEVELOPMENT/GitFolder/Word2Vec2NLP/dataset"
Beispiel #3
0
def build_doc_vector(dir_name, model, build_option, process_option=ProcessOption(), \
    save=True, save_file="doc_vector.bin", \
    to_normalize = False, to_scale = False, cluster_factor=20, num_cpus=-2):
    sentences = Sentences(dir_name)
    docs = sentences.paragraph_iterator()
    doc_num = sentences.doc_num
    stop_words = set(stopwords.words("english"))
    tknzr = TweetTokenizer(preserve_case=False)
    post_docs = util.process_sentences(docs, tknzr, process_option, stop_words)
    if build_option == 1:        # average
        doc_vector = build_average_dv(post_docs, doc_num, model, save, save_file)
    elif build_option == 2:        # cluster
        doc_vector = build_av_tf_idf_dv(post_docs, doc_num, model, save, save_file)
    else:
        doc_vector = build_cluster_dv(post_docs, doc_num, model, cluster_factor, num_cpus, save, save_file)

    if(normalize):
        doc_vector = normalize(doc_vector, copy=False)
    if(scale):
        doc_vector = scale(doc_vector, copy=True)

    return doc_vector




# "/Users/Crazyconv/Conv/DEVELOPMENT/GitFolder/Word2Vec2NLP/dataset"    
def build_doc_vector(dir_name, model, build_option, process_option=ProcessOption(), cluster_factor=20, num_cpus=-2):
    sentences = Sentences(dir_name)
    docs = sentences.paragraph_iterator()
    doc_num = sentences.doc_num
    stop_words = set(stopwords.words("english"))
    post_docs = util.process_sentences(docs, process_option, stop_words)
    if build_option == 1:        # average
        doc_vector = build_average_dv(post_docs, doc_num, model)
    elif build_option == 2:        # cluster
        doc_vector = build_av_tf_idf_dv(post_docs, doc_num, model)
    else:
        doc_vector = build_cluster_dv(post_docs, doc_num, model, cluster_factor, num_cpus)

    return doc_vector
    def load_model(self):
        ipdb.set_trace
        files = [
            os.path.join(self.basedir, fn) for fn in os.listdir(self.basedir)
            if fn.endswith(self.model_name)
        ]
        if len(files) > 0:

            return Doc2Vec.load(self.basedir + self.model_name)
        else:
            files = [
                os.path.join(self.basedir, fn)
                for fn in os.listdir(self.basedir)
                if fn.endswith(self.lyrics_filename)
            ]
            for file in files:
                songs_lyrics_ids_df = pd.read_csv(file,
                                                  delimiter=',',
                                                  encoding="utf-8")

                songs_lyrics_ids_df.head()

                group = ['lyric', 'mood']
                lyrics_by_song = songs_lyrics_ids_df.sort_values(group)\
                      .groupby(group).lyric\
                      .apply(' '.join)\
             #.reset_index(name='lyric')

                lyrics_by_song.head(1)
                file_name = file

            filename = file_name
            nltk.download('wordnet')
            sentences = Sentences(filename=filename, column="lyric")
            df_train = pd.read_csv(filename,
                                   index_col=[0],
                                   usecols=[0, 3],
                                   header=0,
                                   names=["mood", "lyric"])

            model = Doc2Vec(alpha=0.025,
                            min_alpha=0.025,
                            workers=15,
                            min_count=2,
                            window=10,
                            size=200,
                            iter=20,
                            sample=0.001,
                            negative=5)
            model.build_vocab(sentences)
            epochs = 10
            for epoch in range(epochs):
                model.train(sentences,
                            total_examples=model.corpus_count,
                            epochs=model.iter)
                model.alpha -= 0.002  # decrease the learning rate
                model.min_alpha = model.alpha  # fix the learning rate, no decay
            model.save("lyrics.doc2vec")

            return model
Beispiel #6
0
def build_doc_vector(dir_name,
                     model,
                     build_option,
                     process_option=ProcessOption(),
                     cluster_factor=20,
                     num_cpus=-2):
    sentences = Sentences(dir_name)
    docs = sentences.paragraph_iterator()
    doc_num = sentences.doc_num
    stop_words = set(stopwords.words("english"))
    post_docs = util.process_sentences(docs, process_option, stop_words)
    if build_option == 1:  # average
        doc_vector = build_average_dv(post_docs, doc_num, model)
    elif build_option == 2:  # cluster
        doc_vector = build_av_tf_idf_dv(post_docs, doc_num, model)
    else:
        doc_vector = build_cluster_dv(post_docs, doc_num, model,
                                      cluster_factor, num_cpus)

    return doc_vector
def train(data_path, stop_words_file_path):
    sentences = Sentences(data_path, stop_words_file_path)
    num_features = 256
    min_word_count = 10
    num_workers = 48
    context = 20
    epoch = 20
    sample = 1e-5
    model = Word2Vec(
        sentences,
        size=num_features,
        min_count=min_word_count,
        workers=num_workers,
        sample=sample,
        window=context,
        iter=epoch,
    )
    return model
Beispiel #8
0
def tfidf_tsne():
    indx_sent, word2idx, idx2word = Sentences().limit_vocab()

    word_sent_counts = np.zeros((len(word2idx) + 1, len(indx_sent) + 1))
    j = 0
    for sentence in indx_sent:
        for idx in sentence:
            word_sent_counts[idx, j] += 1
        j += 1

    word_sent_tfidf = TFIDF().fit_transform(word_sent_counts).toarray()
    word_sent_tsne = TSNE().fit_transform(word_sent_tfidf)

    plt.scatter(word_sent_tsne[:, 0], word_sent_tsne[:, 1])
    for label in range(len(word2idx)):
        try:
            plt.annotate(s=idx2word[label].encode('utf8'),
                         xy=(word_sent_tsne[label, 0], word_sent_tsne[label,
                                                                      1]))
        except UnicodeError:
            pass
        except KeyError:
            pass
    plt.show()
 def load_sentences(self):
     return Sentences(task=self.c["task"],
                      language_code=self.c["language"],
                      id_by_word=self.embedding.vocabulary.word_id)
Beispiel #10
0
from wiki.xml_handler import WikiTitleTextHandler
from wiki.iterator import WikiPageIterator
from sentences import Sentences
import settings

if __name__ == '__main__':
    handler = WikiTitleTextHandler()
    it = WikiPageIterator(settings.DATA_PATH, handler)
    cntr = 0
    for sentence in Sentences(it):
        print(sentence)
        cntr += 1
        if cntr == 1:
            break
def main(train_dir, test_dir):

    # these may be function parameters
    w2v_option = Word2VecOption(num_features=300, min_word_count=40, \
        num_workers=4, context=10, downsampling=1e-3)
    csv_option = CsvOption(deli=",", title=["review", "sentiment"], \
        chunksize=100, review_name="review", sentiment_name="sentiment")
    process_option = ProcessOption(rm_html=True, rm_punc=True, rm_num=True, \
        lower_case=True, rm_stop_words=False)
    model_name = "model.bin"
    save_model = True
    save_fv = True
    train_fv_name = "train_fv.bin"
    test_fv_name = "test_fv.bin"
    build_option = 2
    save_classifier = True
    classifier_name = "classifier/classifier.bin"
    to_normalize = True
    to_scale = False

    # logger info
    build_method = "average word vector"
    if build_option == 2:
        build_method = "average word vector with tf-idf"
    elif build_option == 3:
        build_method = "cluster word vector"
    logger.debug("text process option: %s", str(process_option))
    logger.debug("use %s to build doc vector", build_method)

    train_sentences = Sentences(train_dir, csv_option, process_option)
    logger.info("number of docs: %d", train_sentences.doc_num)

    # train word2vec
    if (os.path.isfile(model_name)):
        model = Word2Vec.load(model_name)
        logger.debug("model %s already exist, stop training wordvector",
                     model_name)
    else:
        logger.info("start trainning word vector")
        start_time = timeit.default_timer()
        model = wordvector.build_word_vector(train_sentences,
                                             w2v_option,
                                             save=True,
                                             save_file=model_name)
        logger.info("model %s trained in %.4lfs", model_name,
                    timeit.default_timer() - start_time)

    # get doc vector
    logger.info("start building training set doc vector")
    start_time = timeit.default_timer()
    train_fv = wordvector.build_doc_vector(
        train_dir,
        model,
        build_option,
        process_option,
        save_fv,
        train_fv_name,
    )
    print train_fv
    logger.info("training set doc vector built in %.4lfs",
                timeit.default_timer() - start_time)
    logger.info("training set doc vector saved to %s", train_fv_name)
    logger.debug("training size: %s", str(train_fv.shape))

    # train classifier
    logger.info("start training classifier")
    start_time = timeit.default_timer()
    forest = grid_search.GridSearchCV(RandomForestClassifier(), {
        'n_estimators': [100],
        'n_jobs': [100]
    },
                                      cv=5,
                                      scoring='f1_weighted',
                                      n_jobs=100)
    best_model = forest.fit(train_fv,
                            list(train_sentences.sentiment_iterator()))
    logger.info("finished training classifier in %.4lfs",
                timeit.default_timer() - start_time)

    if save_classifier:
        joblib.dump(best_model, classifier_name)

    # evaluate on test set
    logger.info("start building test set doc vector")
    start_time = timeit.default_timer()
    test_sentences = Sentences(test_dir, csv_option, process_option)
    test_fv = wordvector.build_doc_vector(test_dir, model, build_option,
                                          process_option, save_fv,
                                          test_fv_name)
    print test_fv
    logger.info("test set doc vector built in %.4lfs",
                timeit.default_timer() - start_time)
    logger.info("test set doc vector saved to %s", test_fv_name)
    logger.debug("test size: %s", str(test_fv.shape))

    logger.info("start predicting test set sentiment")
    start_time = timeit.default_timer()
    predicted_sentiment = best_model.predict(test_fv)
    logger.info("finished prediction in %.4lfs",
                timeit.default_timer() - start_time)

    accuracy = np.mean(
        predicted_sentiment == list(test_sentences.sentiment_iterator()))

    print "Test Set Accuracy = ", accuracy
    print metrics.classification_report(list(test_sentences.sentiment_iterator()), \
        predicted_sentiment, target_names=['0', '1', '2', '3'])
Beispiel #12
0
            self.encoder.train()
            self.decoder.train()


#数据预处理
#初始化词向量
model_file = sys.argv[1]
embedding = CustomEmbedding(model_file)
flag_words_end = embedding.get_length()
print(flag_words_end)
speical_words = ['GO', 'EOS', 'UNK']
speical_words_index = [
    flag_words_end + 1, flag_words_end + 2, flag_words_end + 3
]
#读取英文输入
input_data = Sentences('./data/wmt14/train.en')
# input_data.readline(reversed=True)
# input_file = open('./data/wmt14/train.en', 'r',encoding='utf8')
# line = input_file.readline()
# sentences = []
# while line:
#     #向量化
#     words = seg_sentence.segment(line)
#     vectors = []
#     for word in words:
#         input = embedding.get_index(word)
#         vectors.append(input)
#     #句子按词翻转逆序
#     vectors.reverse()
#     vectors.append(speical_words_index[0])  # add 'GO'
#     sentences.append(vectors)
Beispiel #13
0
logger = logging.getLogger('sys.stdout')

# keywords = ['apple', '']

dataset = "/Users/Crazyconv/Conv/DEVELOPMENT/GitFolder/Word2Vec2NLP/dataset/all"
model_name = "model.bin"
pre_model_name = "/Users/Crazyconv/Conv/DEVELOPMENT/GitFolder/Word2Vec2NLP/GoogleNews-vectors-negative300.bin.gz"

w2v_option = Word2VecOption(num_features=500, min_word_count=10, \
    num_workers=4, context=10, downsampling=1e-7)
csv_option = CsvOption(deli=",", title=["review", "sentiment"], \
    chunksize=100, review_name="review", sentiment_name="sentiment")
process_option = ProcessOption(rm_html=True, rm_punc=True, rm_num=True, \
    lower_case=True, rm_stop_words=False)

train_sentences = Sentences(dataset, csv_option, process_option)

# build model
if (os.path.isfile(model_name)):
    model = Word2Vec.load(model_name)
    logger.debug("model %s already exist, stop training wordvector",
                 model_name)
else:
    logger.info("start trainning word vector")
    start_time = timeit.default_timer()
    model = wordvector.build_word_vector(train_sentences,
                                         w2v_option,
                                         save=True,
                                         save_file=model_name)
    logger.info("model %s trained in %.4lfs", model_name,
                timeit.default_timer() - start_time)
Beispiel #14
0
bigram = Phraser(Phrases(documents))
trigram = Phraser(Phrases(bigram[documents]))
sentences = open(os.path.join(data_dir, "sentences-3.txt"), "w+")
print("saving sentences to file")
for s in trigram[bigram[documents]]:
    for sentece in s:
        sentences.write("{}\t".format(sentece))
    sentences.write("\n")
sentences.close()

# trigram = Phraser(Phrases(bigram[sentences]))

#trigram = Phraser.load(os.path.join(data_dir,"phrases"))

sentences = Sentences(os.path.join(data_dir, "sentences-3.txt"))
#
# print("training model")
# model = Word2Vec(sentences=sentences,window=5,min_count=3,sg=0,size=300)
# model.save(os.path.join(data_dir,"word2vec_model"))
#
model = Word2Vec.load(os.path.join(data_dir, "word2vec_model"))
# #
print(model.wv.most_similar("kpk"))

# res = open("senteces.txt","w+")
# for sentences in trigram[sentences]:
#     for sentence in sentences:
#         res.write(sentence)
#         res.write("\n")
# res.close()
Beispiel #15
0
from datetime import datetime

# seeds the random function
# this makes the random function spit out different random numbers
# random is just like a math equations, if you put in the same number, you get
# out the same number. If we give it time, which changes, it will give us
# different numbers.
random.seed(datetime.now)

# this stores our dictionary of words in a variable called words so that we can
# use it more easily
words = Words()

# this stores our sentence structures in a variable called sentences so that we
# can print them more easily
sentences = Sentences()

# this is a list of all the sentence structure options that we can print. We use
# this list so that we can pick a random one to print when we write the poem
options = {
    0: sentences.print_sentence_with_simile,
    1: sentences.print_singular_sentence,
    2: sentences.print_plural_sentence,
    3: sentences.print_plural_action_on_singular_sentence,
    4: sentences.print_plural_action_on_plural_sentence,
    5: sentences.print_singular_action_on_plural_sentence,
    6: sentences.print_singular_action_on_singular_sentence,
    7: sentences.print_singular_action_with_adverb_sentence,
    8: sentences.print_plural_action_with_adverb_sentence
}
Beispiel #16
0
def skipgram_model():
    np.random.seed(0)
    act = tanh
    context = 3
    vocab_limit = 500
    indx_sent, word2idx, idx2word = Sentences(n_sentences=5000).limit_vocab(
        n_limit=vocab_limit)
    skipgrams = [[] for i in range(vocab_limit)]
    for sentence in indx_sent:
        len_sent = len(sentence)
        for tidx, token in enumerate(sentence):
            bigram = []
            for step in range(1, context + 1):
                if tidx + step < len_sent:
                    bigram.append(sentence[tidx + step])
                if tidx - step >= 0:
                    bigram.append(sentence[tidx - step])
            skipgrams[token].append(bigram)

    train_percentage = 0.8

    train_grams = [[] for i in range(vocab_limit)]
    n_train = 0
    test_grams = [[] for i in range(vocab_limit)]
    n_test = 0
    for sidx, skipgram in enumerate(skipgrams):
        skip_len = len(skipgram)
        if skip_len < 3:
            ValueError('Insufficient data for training and testing!')
        train_len = floor(train_percentage * skip_len)
        n_train += train_len
        n_test += skip_len - train_len
        train_grams[sidx].extend(skipgram[:train_len])
        test_grams[sidx].extend(skipgram[train_len:])

    # number based on:
    # https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw
    n_hidden = round(n_train / (5 * (vocab_limit + vocab_limit)))

    input_to_hidden = 2 * np.random.random((vocab_limit, n_hidden)) - 1.0
    hidden_to_output = 2 * np.random.random((n_hidden, vocab_limit)) - 1.0

    base_error = 0.0
    for tidx, token_skipgrams in enumerate(test_grams):
        guess = np.dot(input_to_hidden[tidx, :], hidden_to_output)
        for skipgram in token_skipgrams:
            iter_error = -guess
            iter_error[skipgram] += 1.0
            base_error += np.linalg.norm(tanh(iter_error))

    print('Base L2 error: %s' % str(base_error))

    n_epoch = 10
    alpha = 1.0
    # this implements one-at-a-time stochastic gradient descent
    for epoch in range(n_epoch):
        for tidx, token_skipgrams in enumerate(train_grams):
            for skipgram in token_skipgrams:
                # input is one-hot, so returns one column of input_to_hidden
                l1 = act(input_to_hidden[tidx, :])
                l2 = act(np.dot(l1, hidden_to_output))
                err_output_to_hidden = -l2
                # skipgram is a list
                err_output_to_hidden[skipgram] += 1.0
                d1 = err_output_to_hidden * act(l2, d=True)
                err_hidden_to_input = np.dot(d1, hidden_to_output.T)
                d0 = err_hidden_to_input * act(l1, d=True)
                hidden_to_output += alpha * np.outer(l1, d1)
                input_to_hidden[tidx, :] += alpha * d0
                ih_norm = np.linalg.norm(input_to_hidden[tidx, :])
                if (isnan(ih_norm)):
                    raise ValueError()

    test_error = 0.0
    for tidx, token_skipgrams in enumerate(test_grams):
        guess = np.dot(input_to_hidden[tidx, :], hidden_to_output)
        for skipgram in token_skipgrams:
            iter_error = -guess
            iter_error[skipgram] += 1.0
            test_error += np.linalg.norm(tanh(iter_error))

    print('Test L2 error: %s' % str(test_error))
def main(train_dir, test_dir):

    # these may be function parameters 
    w2v_option = Word2VecOption(num_features=300, min_word_count=40, \
        num_workers=4, context=10, downsampling=1e-3)
    csv_option = CsvOption(deli=",", title=["review", "sentiment"], \
        chunksize=100, review_name="review", sentiment_name="sentiment")
    process_option = ProcessOption(rm_html=True, rm_punc=True, rm_num=True, \
        lower_case=True, rm_stop_words=False)
    model_name = "model.bin"
    save_model = True
    save_fv = True
    train_fv_name = "train_fv.bin"
    test_fv_name = "test_fv.bin"
    build_option = 2
    save_classifier = True
    classifier_name = "classifier/classifier.bin"
    to_normalize = True
    to_scale = False

    # logger info
    build_method = "average word vector"
    if build_option == 2:
        build_method = "average word vector with tf-idf"
    elif build_option == 3:
        build_method = "cluster word vector"
    logger.debug("text process option: %s", str(process_option))
    logger.debug("use %s to build doc vector", build_method)

    train_sentences = Sentences(train_dir, csv_option, process_option)
    logger.info("number of docs: %d", train_sentences.doc_num)

    # train word2vec
    if(os.path.isfile(model_name)):
        model = Word2Vec.load(model_name)
        logger.debug("model %s already exist, stop training wordvector", model_name)
    else:
        logger.info("start trainning word vector")
        start_time = timeit.default_timer()
        model = wordvector.build_word_vector(train_sentences, w2v_option, save=True, save_file=model_name)
        logger.info("model %s trained in %.4lfs", model_name, timeit.default_timer() - start_time)

    # get doc vector
    logger.info("start building training set doc vector")
    start_time = timeit.default_timer()
    train_fv = wordvector.build_doc_vector(train_dir, model, build_option, process_option, save_fv, train_fv_name, )
    print train_fv
    logger.info("training set doc vector built in %.4lfs", timeit.default_timer() - start_time)
    logger.info("training set doc vector saved to %s", train_fv_name)
    logger.debug("training size: %s", str(train_fv.shape))

    # train classifier
    logger.info("start training classifier")
    start_time = timeit.default_timer()
    forest = grid_search.GridSearchCV(RandomForestClassifier(), {'n_estimators':[100], 'n_jobs':[100]}, cv=5, scoring = 'f1_weighted', n_jobs=100)
    best_model = forest.fit(train_fv, list(train_sentences.sentiment_iterator()))
    logger.info("finished training classifier in %.4lfs", timeit.default_timer() - start_time)

    if save_classifier:
        joblib.dump(best_model, classifier_name) 

    # evaluate on test set
    logger.info("start building test set doc vector")
    start_time = timeit.default_timer()
    test_sentences = Sentences(test_dir, csv_option, process_option)
    test_fv = wordvector.build_doc_vector(test_dir, model, build_option, process_option, save_fv, test_fv_name)
    print test_fv
    logger.info("test set doc vector built in %.4lfs", timeit.default_timer() - start_time)
    logger.info("test set doc vector saved to %s", test_fv_name)
    logger.debug("test size: %s", str(test_fv.shape))

    logger.info("start predicting test set sentiment")
    start_time = timeit.default_timer()
    predicted_sentiment = best_model.predict(test_fv)
    logger.info("finished prediction in %.4lfs", timeit.default_timer() - start_time)

    accuracy = np.mean(predicted_sentiment == list(test_sentences.sentiment_iterator()))

    print "Test Set Accuracy = ", accuracy 
    print metrics.classification_report(list(test_sentences.sentiment_iterator()), \
        predicted_sentiment, target_names=['0', '1', '2', '3'])