import sentiment if __name__ == '__main__': domain = [] domain.append("books") domain.append("dvd") domain.append("electronics") domain.append("kitchen") source_ind = 2 target_ind = 3 # making a shared representation for both source domain and target domain # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth parameter: the embedding dimension, identical to the hidden layer dimension tr.train(domain[source_ind], domain[target_ind], 100, 10, 500) # learning the classifier in the source domain and testing in the target domain # the results, weights and all the meta-data will appear in source-target directory # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth param: the embedding dimension identical to the hidden layer dimension # sixth param: we use logistic regression as our classifier, it takes the const C for its learning sentiment.sent(domain[source_ind], domain[target_ind], 100, 10, 500, 0.1)
parser.add_argument('-dim', help='number of hidden units (default = 100)', default=100, type=int) parser.add_argument('-min', help='minimum frequency for pivots (default = 10)', default=10, type=int) parser.add_argument('-piv', help='number of pivots (default = 500)', default=500, type=int) parser.add_argument('-c', help='C parameter for svm (default = 0.1)', default=0.1, type=float) args = parser.parse_args() print('Domain adaptation from {0} to {1}'.format(args.tr, args.te)) # making a shared representation for both source domain and target domain # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth parameter: the embedding dimension, identical to the hidden layer dimension tr.train(args.tr, args.te, args.dim, args.min, args.piv) # learning the classifier in the source domain and testing in the target domain # the results, weights and all the meta-data will appear in source-target directory # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth param: the embedding dimension identical to the hidden layer dimension # sixth param: we use logistic regression as our classifier, it takes the const C for its learning sentiment.sent(args.tr, args.te, args.dim, args.min, args.piv, args.c)
import time from sentiment import sent def extract(file): f = open(file, 'r') tupleArray = [] for line in f: zero = line[20:38] min = line.find('>') max = len(line) one = line[min + 1:max].strip() tuple = [zero, one] tupleArray.append(tuple) return tupleArray d = extract('twitterData.txt') f = open("processedTweets", 'a') for j in range(len(d)): d[j][0] = d[j][0].split(" ") time.sleep(0.25) #We are limited in our api calls per seconds f.write( str(d[j][0][0]) + "," + str(d[j][0][1]) + "," + str(sent(d[j][1])) + "\n")
import tr import sentiment if __name__ == '__main__': domain = [] domain.append("books") domain.append("kitchen") domain.append("dvd") domain.append("electronics") # making a shared representation for both source domain and target domain # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth parameter: the embedding dimension, identical to the hidden layer dimension tr.train(domain[0], domain[1], 100, 10, 500) # learning the classifier in the source domain and testing in the target domain # the results, weights and all the meta-data will appear in source-target directory # first param: the source domain # second param: the target domain # third param: number of pivots # fourth param: appearance threshold for pivots in source and target domain # fifth param: the embedding dimension identical to the hidden layer dimension # sixth param: we use logistic regression as our classifier, it takes the const C for its learning sentiment.sent(domain[0], domain[1], 100, 10, 500, 0.1)
conta = 0 for i in lista: for kzinho in k: print("faltam " + str(rodadas) + " rodadas") rodadas = rodadas - 1 print("pivots =" + str(kzinho)) src = i[0] dst = i[1] time = datetime.datetime.now() print("loading....") tr.train(domain[src], domain[dst], kzinho, 10) print("Sent....") for d in dim: print(d) sentiment.sent(domain[src], domain[dst], kzinho, 10, d, 0.1, "logistic", "binario", time) print(datetime.datetime.now()) #[(a, b) for a in for b in lista2] """for j in algorithms: for n in extraction: for i in lista: src = i[0] dst = i[1] print(datetime.datetime.now()) print("loading....") tr.train(domain[src],domain[dst],500,10) print("Sent....") sentiment.sent(domain[src],domain[dst],500,10,50,0.1, "random")"""
print(x) if x == '1': algorithms = ['logistic'] elif x == '2': algorithms = ['random'] elif x == '3': algorithms = ['tree'] elif x == '4': algorithms = ['svm'] else: print("\n" * 130) print(x + " IS AN INVALID INPUT, TRY AGAIN!") extraction = ['tfidf', 'idf', 'counter', 'binario'] k = 500 lista = [[0, 1], [0, 2], [0, 3], [1, 0], [1, 2], [1, 3], [2, 0], [2, 1], [2, 3], [3, 0], [3, 1], [3, 2]] for j in algorithms: for n in extraction: for i in lista: src = i[0] dst = i[1] time = datetime.datetime.now() print("loading....") tr.train(domain[src], domain[dst], 500, 10) print("Sent....") sentiment.sent(domain[src], domain[dst], 500, 10, 50, 0.1, j, n, time)