def test_split(): arr = list(range(125)) y = split(arr, 4) assert y[-1] == list(range(100, 125)) assert list(y) == [list(range(i, i + 25)) for i in range(0, 125, 25)] y = split(arr, list(range(25, 125, 25))) assert y[-1] == list(range(100, 125)) assert list(y) == [list(range(i, i + 25)) for i in range(0, 125, 25)] y = split(arr, [(i, i + 25) for i in range(0, 125, 25)]) assert y[-1] == list(range(100, 125)) assert list(y) == [list(range(i, i + 25)) for i in range(0, 125, 25)] y[-1] = [0] * 25 assert arr[100:] == [0] * 25 y[-1:] = [list(range(0, -25, -1))] assert arr[:100] == list(range(100)) assert arr[100:] == list(range(0, -25, -1))
def reload(): global train_subset, val_subset, test_subset, \ durations, gloss_seqs, pose2d_seqs, pose3d_seqs, frame_seqs with open(os.path.join(cachedir, "data.pkl"), 'rb') as f: durations, gloss_seqs, rec_mapping, transformations, \ train_subset, val_subset, test_subset = pkl.load(f) segments = np.stack( [np.cumsum(durations) - durations, np.cumsum(durations)], axis=1) pose2d_seqs = seqtools.split( np.load(os.path.join(cachedir, "pose2d_seqs.npy"), mmap_mode='r'), segments) pose3d_seqs = seqtools.split( np.load(os.path.join(cachedir, "pose3d_seqs.npy"), mmap_mode='r'), segments) frame_seqs = seqtools.smap(lambda r: dataset.bgr_frames(r), rec_mapping) frame_seqs = seqtools.smap(transform_frames, frame_seqs, transformations)
def poses_3d(self) -> np.ndarray: return seqtools.split(self._poses_3d, self.rec_info['skel_data_off'][1:])
def transfer_feat_seqs(transfer_from, freeze_at): import theano import theano.tensor as T import lasagne from sltools.nn_utils import adjust_length from experiments.utils import reload_best_hmm, reload_best_rnn report = shelve.open(os.path.join(cachedir, transfer_from)) if report['meta']['modality'] == "skel": source_feat_seqs = [skel_feat_seqs] elif report['meta']['modality'] == "bgr": source_feat_seqs = [bgr_feat_seqs] elif report['meta']['modality'] == "fusion": source_feat_seqs = [skel_feat_seqs, bgr_feat_seqs] else: raise ValueError() # no computation required if freeze_at == "inputs": return source_feat_seqs # reuse cached features dump_file = os.path.join( cachedir, report['meta']['experiment_name'] + "_" + freeze_at + "feats.npy") if os.path.exists(dump_file): boundaries = np.stack( (np.cumsum(durations) - durations, np.cumsum(durations)), axis=1) return [split_seq(np.load(dump_file, mmap_mode='r'), boundaries)] # reload model if report['meta']['model'] == "hmm": _, recognizer, _ = reload_best_hmm(report) l_in = recognizer.posterior.l_in if freeze_at == "embedding": l_feats = recognizer.posterior.l_feats elif freeze_at == "logits": l_feats = recognizer.posterior.l_raw elif freeze_at == "posteriors": l_feats = lasagne.layers.NonlinearityLayer( recognizer.posterior.l_out, T.exp) else: raise ValueError() batch_size, max_time, *_ = l_in[0].output_shape # TODO: fragile warmup = recognizer.posterior.warmup else: _, model_dict, _ = reload_best_rnn(report) l_in = model_dict['l_in'] l_feats = model_dict['l_feats'] batch_size, max_time, *_ = l_in[0].output_shape # TODO: fragile warmup = model_dict['warmup'] feats_var = lasagne.layers.get_output(l_feats, deterministic=True) predict_batch_fn = theano.function([l.input_var for l in l_in], feats_var) step = max_time - 2 * warmup # turn sequences into chunks chunks = [(i, k, min(d, k + max_time)) for i, d in enumerate(durations) for k in range(0, d - warmup, step)] chunked_sequences = [] for feat in source_feat_seqs: def get_chunk(i, t1, t2, feat_=feat): return adjust_length(feat_[i][t1:t2], size=max_time, pad=0) chunked_sequences.append(seqtools.starmap(get_chunk, chunks)) chunked_sequences = seqtools.collate(chunked_sequences) # turn into minibatches null_sample = chunked_sequences[0] n_features = len(null_sample) def collate(b): return [ np.array([b[i][c] for i in range(batch_size)]) for c in range(n_features) ] minibatches = seqtools.batch(chunked_sequences, batch_size, pad=null_sample, collate_fn=collate) # minibatches = seqtools.prefetch(minibatches, nworkers=2, max_buffered=10) # process batched_predictions = seqtools.starmap(predict_batch_fn, minibatches) batched_predictions = seqtools.add_cache(batched_predictions) chunked_predictions = seqtools.unbatch(batched_predictions, batch_size) # recompose feat_size = l_feats.output_shape[2:] storage = open_memmap(dump_file, 'w+', dtype=np.float32, shape=(sum(durations), ) + feat_size) subsequences = np.stack( [np.cumsum(durations) - durations, np.cumsum(durations)], axis=1) out_view = seqtools.split(storage, subsequences) for v, (s, start, stop) in zip(chunked_predictions, chunks): skip = warmup if start > 0 else 0 out_view[s][start + skip:stop] = v[skip:stop - start] return [out_view]