Beispiel #1
0
    def predict_fn(feature_sequences):
        durations = np.array([len(s) for s in feature_sequences[0]])
        step = max_time - 2 * warmup

        # turn sequences
        chunks = [(i, k, min(d, k + max_time)) for i, d in enumerate(durations)
                  for k in range(0, d - warmup, step)]
        chunked_sequences = []
        for feat in feature_sequences:

            def get_chunk(i, t1, t2, feat_=feat):
                return adjust_length(feat_[i][t1:t2], size=max_time, pad=0)

            chunked_sequences.append(seqtools.starmap(get_chunk, chunks))
        chunked_sequences.append([np.int32(t2 - t1) for _, t1, t2 in chunks])
        chunked_sequences = seqtools.collate(chunked_sequences)

        # turn into minibatches
        null_sample = chunked_sequences[0]
        n_features = len(null_sample)

        def collate(b):
            return [
                np.array([b[i][c] for i in range(batch_size)])
                for c in range(n_features)
            ]

        minibatches = seqtools.batch(chunked_sequences,
                                     batch_size,
                                     pad=null_sample,
                                     collate_fn=collate)
        # minibatches = seqtools.prefetch(
        #     minibatches, max_cached=nworkers * 5, nworkers=nworkers)

        # process
        batched_predictions = seqtools.starmap(predict_batch_fn, minibatches)
        batched_predictions = seqtools.add_cache(batched_predictions)
        chunked_predictions = seqtools.unbatch(batched_predictions, batch_size)

        # recompose
        out = [
            np.empty((d, ) + l_out.output_shape[2:], dtype=np.float32)
            for d in durations
        ]

        for v, (s, start, stop) in zip(chunked_predictions, chunks):
            skip = warmup if start > 0 else 0
            out[s][start + skip:stop] = v[skip:stop - start]

        return out
Beispiel #2
0
def test_starmap():
    n = 100
    data = [(random.random(), ) for _ in range(n)]

    def do(x):
        do.call_cnt += 1
        return x + 1

    do.call_cnt = 0

    # indexing
    result = starmap(do, data)
    assert len(result) == len(data)
    assert do.call_cnt == 0
    assert list(result) == [x + 1 for (x, ) in data]
    assert do.call_cnt == n
    assert [result[i] for i in range(len(result))] == [x + 1 for (x, ) in data]
    assert list(result[:]) == [x + 1 for (x, ) in data]
Beispiel #3
0
 def z_frames(self):
     return seqtools.starmap(
         lambda signer, sess, date, label, duration, skel_dat_off:
         Recording(self._datadir, signer, label, sess, date).z_frames(),
         self.rec_info)
Beispiel #4
0
def transfer_feat_seqs(transfer_from, freeze_at):
    import theano
    import theano.tensor as T
    import lasagne
    from sltools.nn_utils import adjust_length
    from experiments.utils import reload_best_hmm, reload_best_rnn

    report = shelve.open(os.path.join(cachedir, transfer_from))

    if report['meta']['modality'] == "skel":
        source_feat_seqs = [skel_feat_seqs]
    elif report['meta']['modality'] == "bgr":
        source_feat_seqs = [bgr_feat_seqs]
    elif report['meta']['modality'] == "fusion":
        source_feat_seqs = [skel_feat_seqs, bgr_feat_seqs]
    else:
        raise ValueError()

    # no computation required
    if freeze_at == "inputs":
        return source_feat_seqs

    # reuse cached features
    dump_file = os.path.join(
        cachedir,
        report['meta']['experiment_name'] + "_" + freeze_at + "feats.npy")
    if os.path.exists(dump_file):
        boundaries = np.stack(
            (np.cumsum(durations) - durations, np.cumsum(durations)), axis=1)
        return [split_seq(np.load(dump_file, mmap_mode='r'), boundaries)]

    # reload model
    if report['meta']['model'] == "hmm":
        _, recognizer, _ = reload_best_hmm(report)
        l_in = recognizer.posterior.l_in
        if freeze_at == "embedding":
            l_feats = recognizer.posterior.l_feats
        elif freeze_at == "logits":
            l_feats = recognizer.posterior.l_raw
        elif freeze_at == "posteriors":
            l_feats = lasagne.layers.NonlinearityLayer(
                recognizer.posterior.l_out, T.exp)
        else:
            raise ValueError()
        batch_size, max_time, *_ = l_in[0].output_shape  # TODO: fragile
        warmup = recognizer.posterior.warmup

    else:
        _, model_dict, _ = reload_best_rnn(report)
        l_in = model_dict['l_in']
        l_feats = model_dict['l_feats']
        batch_size, max_time, *_ = l_in[0].output_shape  # TODO: fragile
        warmup = model_dict['warmup']

    feats_var = lasagne.layers.get_output(l_feats, deterministic=True)
    predict_batch_fn = theano.function([l.input_var for l in l_in], feats_var)

    step = max_time - 2 * warmup

    # turn sequences into chunks
    chunks = [(i, k, min(d, k + max_time)) for i, d in enumerate(durations)
              for k in range(0, d - warmup, step)]
    chunked_sequences = []
    for feat in source_feat_seqs:

        def get_chunk(i, t1, t2, feat_=feat):
            return adjust_length(feat_[i][t1:t2], size=max_time, pad=0)

        chunked_sequences.append(seqtools.starmap(get_chunk, chunks))
    chunked_sequences = seqtools.collate(chunked_sequences)

    # turn into minibatches
    null_sample = chunked_sequences[0]
    n_features = len(null_sample)

    def collate(b):
        return [
            np.array([b[i][c] for i in range(batch_size)])
            for c in range(n_features)
        ]

    minibatches = seqtools.batch(chunked_sequences,
                                 batch_size,
                                 pad=null_sample,
                                 collate_fn=collate)
    # minibatches = seqtools.prefetch(minibatches, nworkers=2, max_buffered=10)

    # process
    batched_predictions = seqtools.starmap(predict_batch_fn, minibatches)
    batched_predictions = seqtools.add_cache(batched_predictions)
    chunked_predictions = seqtools.unbatch(batched_predictions, batch_size)

    # recompose
    feat_size = l_feats.output_shape[2:]
    storage = open_memmap(dump_file,
                          'w+',
                          dtype=np.float32,
                          shape=(sum(durations), ) + feat_size)
    subsequences = np.stack(
        [np.cumsum(durations) - durations,
         np.cumsum(durations)], axis=1)
    out_view = seqtools.split(storage, subsequences)

    for v, (s, start, stop) in zip(chunked_predictions, chunks):
        skip = warmup if start > 0 else 0
        out_view[s][start + skip:stop] = v[skip:stop - start]

    return [out_view]