Beispiel #1
0
def update_distribution_metadata(changed, distribution_model):
    time_index = DistributionRepository(
        distribution_model).get_time_index_series()
    df = init_df(distribution_model, time_index)

    periodicity = get_distribution_time_index_periodicity(time_index)
    new_metadata = []
    metas_to_delete = []
    field_content_type = ContentType.objects.get_for_model(Field)
    for serie in list(df.columns):
        meta = calculate_enhanced_meta(df[serie], periodicity)

        field = distribution_model.field_set.get(identifier=serie,
                                                 present=True)
        for meta_key, value in meta.items():
            new_metadata.append(
                Metadata(content_type=field_content_type,
                         object_id=field.id,
                         key=meta_key,
                         value=value))

        metas_to_delete.extend(
            Metadata.objects.filter(object_id=field.id,
                                    key__in=list(meta.keys())).values_list(
                                        'id', flat=True))
    with transaction.atomic():
        Metadata.objects.filter(id__in=metas_to_delete).delete()
        Metadata.objects.bulk_create(new_metadata)

    distribution_model.enhanced_meta.update_or_create(
        key=meta_keys.LAST_HASH,
        defaults={'value': distribution_model.data_hash})
    distribution_model.enhanced_meta.update_or_create(
        key=meta_keys.CHANGED, defaults={'value': str(changed)})
    update_popularity_metadata(distribution_model)
    remove_duplicated_fields(distribution_model)
Beispiel #2
0
 def test_is_updated(self):
     with freeze_time(self.df.index[-1]):
         meta = calculate_enhanced_meta(self.df[self.df.columns[0]], self.periodicity)
     self.assertTrue(meta.get(meta_keys.IS_UPDATED))
Beispiel #3
0
 def test_is_not_updated(self):
     meta = calculate_enhanced_meta(self.df[self.df.columns[0]], self.periodicity)
     self.assertFalse(meta.get(meta_keys.IS_UPDATED))
Beispiel #4
0
 def setUp(self):
     self.periodicity = 'R/P1D'
     path = os.path.join(SAMPLES_DIR, 'daily_periodicity.csv')
     self.df = pd.read_csv(path, parse_dates=['indice_tiempo'], index_col='indice_tiempo')
     self.meta = calculate_enhanced_meta(self.df[self.df.columns[0]], self.periodicity)
Beispiel #5
0
 def test_second_to_last_value_uses_last_valid_index(self):
     path = os.path.join(SAMPLES_DIR, 'daily_periodicity_missing_last_value.csv')
     df = pd.read_csv(path, parse_dates=['indice_tiempo'], index_col='indice_tiempo')
     meta = calculate_enhanced_meta(df[df.columns[0]], self.periodicity)
     self.assertEqual(5.3504, meta.get(meta_keys.SECOND_TO_LAST_VALUE))
Beispiel #6
0
 def test_last_value_takes_last_non_nan_value(self):
     path = os.path.join(SAMPLES_DIR, 'daily_periodicity_missing_last_value.csv')
     df = pd.read_csv(path, parse_dates=['indice_tiempo'], index_col='indice_tiempo')
     meta = calculate_enhanced_meta(df[df.columns[0]], self.periodicity)
     self.assertEqual(5.0931, meta.get(meta_keys.LAST_VALUE))