def __init_loop_list_for_ticker__(self):
     self._loop_list_ticker = LoopList4Dictionaries()
     if self.sys_config.from_db and self._excel_file_with_test_data is not None:
         for ind, rows in self._df_test_data.iterrows():
             if self._loop_list_ticker.counter >= self._excel_file_with_test_data.row_start:
                 self.sys_config.config.ticker_dic[rows[PSC.TICKER]] = rows[
                     PSC.NAME]
                 start_date = MyDate.get_date_from_datetime(
                     rows[PSC.BEGIN_PREVIOUS])
                 date_end = MyDate.get_date_from_datetime(
                     rows[PSC.END] +
                     timedelta(days=rows[PSC.T_NEEDED] + 20))
                 and_clause = "Date BETWEEN '{}' AND '{}'".format(
                     start_date, date_end)
                 self._loop_list_ticker.append({
                     LL.TICKER: rows[PSC.TICKER],
                     LL.AND_CLAUSE: and_clause
                 })
             if self._loop_list_ticker.counter >= self._excel_file_with_test_data.row_end:
                 break
     else:
         for ticker in self.sys_config.ticker_dict:
             and_clause = self.sys_config.data_provider.and_clause
             self._loop_list_ticker.append({
                 LL.TICKER: ticker,
                 LL.AND_CLAUSE: and_clause
             })
Beispiel #2
0
 def init_and_clause(self):
     if self.period == PRD.INTRADAY:
         minutes = self.aggregation * self.limit
         days = int(minutes / (60 * 24)) + 1
         dt_start = MyDate.get_date_from_datetime()
         dt_start = MyDate.adjust_by_days(dt_start, -days)
         dt_end = MyDate.get_date_from_datetime()
         dt_end = MyDate.adjust_by_days(dt_end, 1)
         self._and_clause = self.get_and_clause(dt_start, dt_end)
Beispiel #3
0
 def get_and_clause(dt_start=None, dt_end=None):
     if dt_start is None:
         date_start = MyDate.get_date_from_datetime()
         date_start = MyDate.adjust_by_days(date_start, -1)
         dt_end = MyDate.get_date_from_datetime()
         dt_end = MyDate.adjust_by_days(dt_end, 1)
     else:
         date_start = MyDate.get_date_from_datetime(dt_start)
     if dt_end:
         date_end = MyDate.get_date_from_datetime(dt_end)
         return "Date BETWEEN '{}' AND '{}'".format(date_start, date_end)
     return "Date >= '{}'".format(date_start)
Beispiel #4
0
 def update_equity_records(self) -> SalesmanDatabaseUpdateJobResult:
     result_obj = SalesmanDatabaseUpdateJobResult()
     access_layer = AccessLayer4Sale(self.db_salesman)
     dt_today = MyDate.get_date_from_datetime()
     # dt_today = MyDate.adjust_by_days(dt_today, 40)
     dt_valid_until = MyDate.adjust_by_days(dt_today, 30)
     dt_today_str = str(dt_today)
     dt_valid_until_str = str(dt_valid_until)
     return result_obj
 def update_trade_policy_metric_for_today(self, pattern_type_list: list):
     print("\nSTARTING 'update_trade_policy_metric_for_today' for {}...".
           format(pattern_type_list))
     access_layer = AccessLayer4TradePolicyMetric(self.db_stock)
     dt_today_str = str(MyDate.get_date_from_datetime())
     check_dict = {TPMDC.VALID_DT: dt_today_str}
     if access_layer.are_any_records_available(check_dict):
         print(
             "END 'update_trade_policy_metric_for_today': No updates for today\n"
         )
         # return
     policy_list = TradePolicyFactory.get_trade_policies_for_metric_calculation(
     )
     period_list = [PRD.DAILY]
     mean_aggregation_list = [4, 8, 16]
     for pattern_type in pattern_type_list:
         for period in period_list:
             for mean_aggregation in mean_aggregation_list:
                 policy_handler = TradePolicyHandler(
                     pattern_type=pattern_type,
                     period=period,
                     mean_aggregation=mean_aggregation)
                 if policy_handler.are_enough_data_available():
                     for policy in policy_list:
                         rewards, entity_counter = policy_handler.run_policy(
                             policy, False)
                         insert_dict = {
                             TPMDC.VALID_DT:
                             dt_today_str,
                             TPMDC.POLICY:
                             policy.policy_name,
                             TPMDC.EPISODES:
                             1,
                             TPMDC.PERIOD:
                             period,
                             TPMDC.AGGREGATION:
                             1,
                             TPMDC.TRADE_MEAN_AGGREGATION:
                             mean_aggregation,
                             TPMDC.PATTERN_TYPE:
                             pattern_type,
                             TPMDC.NUMBER_TRADES:
                             entity_counter,
                             TPMDC.REWARD_PCT_TOTAL:
                             round(rewards, 2),
                             TPMDC.REWARD_PCT_AVG:
                             round(rewards / entity_counter, 2),
                         }
                         access_layer.insert_data([insert_dict])
     print("END 'update_trade_policy_metric_for_today'\n")
Beispiel #6
0
 def init_detection_process_for_automated_pattern_update(self):
     date_now = MyDate.get_date_from_datetime()
     date_from = MyDate.adjust_by_days(date_now, -180)
     self.data_provider.and_clause = "Date BETWEEN '{}' AND '{}'".format(
         str(date_from), str(date_now))
     self.data_provider.from_db = True
     self.data_provider.period = PRD.DAILY
     self.config.pattern_type_list = FT.get_all()
     self.config.detection_process = PDP.UPDATE_PATTERN_DATA
     self.config.plot_data = False
     self.config.with_trading = False
     self.config.save_pattern_data = True
     self.config.save_trade_data = False
     self.config.save_wave_data = False
     self.config.plot_only_pattern_with_fibonacci_waves = False
     self.config.plot_min_max = False
     self.config.plot_volume = False
     self.config.length_for_local_min_max = 2
     self.config.length_for_local_min_max_fibonacci = 1
     self.config.bound_upper_value = CN.CLOSE
     self.config.bound_lower_value = CN.CLOSE
 def update_equity_records(self) -> StockDatabaseUpdateJobResult:
     result_obj = StockDatabaseUpdateJobResult()
     access_layer = AccessLayer4Equity(self.db_stock)
     dt_today = MyDate.get_date_from_datetime()
     # dt_today = MyDate.adjust_by_days(dt_today, 40)
     dt_valid_until = MyDate.adjust_by_days(dt_today, 30)
     dt_today_str = str(dt_today)
     dt_valid_until_str = str(dt_valid_until)
     exchange_equity_type_dict = self.__get_equity_dict__()
     result_obj.number_processed_records = len(exchange_equity_type_dict)
     for exchange, equity_type in exchange_equity_type_dict.items():
         value_dict = access_layer.get_index_dict(exchange)
         if access_layer.are_any_records_available_for_date(
                 dt_today, exchange, equity_type):
             result_obj.number_deleted_records += access_layer.delete_existing_equities(
                 equity_type, exchange)
             sleep(2)
             self.__update_equity_records_for_equity_type__(
                 access_layer, dt_today_str, dt_valid_until_str, exchange,
                 equity_type)
             result_obj.number_saved_records += 1
     return result_obj
Beispiel #8
0
    def add_entry(self, pattern: Pattern):
        self.__init_dic__()

        self.dic[PSC.C_BOUND_UPPER_VALUE] = self.sys_config.config.bound_upper_value
        self.dic[PSC.C_BOUND_LOWER_VALUE] = self.sys_config.config.bound_lower_value
        self.dic[PSC.C_CHECK_PREVIOUS_PERIOD] = self.sys_config.config.check_previous_period
        self.dic[PSC.C_BREAKOUT_OVER_CONGESTION] = self.sys_config.config.breakout_over_congestion_range
        self.dic[PSC.C_TOLERANCE_PCT] = pattern.tolerance_pct
        self.dic[PSC.C_BREAKOUT_RANGE_PCT] = self.sys_config.config.breakout_range_pct
        self.dic[PSC.C_AND_CLAUSE] = self.sys_config.data_provider.and_clause

        self.dic[PSC.CON_PREVIOUS_PERIOD_CHECK_OK] = pattern.condition_handler.previous_period_check_ok
        self.dic[PSC.CON_COMBINED_PARTS_APPLICABLE] = pattern.condition_handler.combined_parts_applicable
        self.dic[PSC.CON_BREAKOUT_WITH_BUY_SIGNAL] = pattern.condition_handler.breakout_with_buy_signal

        self.dic[PSC.STATUS] = 'Finished' if pattern.was_breakout_done() else 'Open'
        self.dic[PSC.TICKER] = self.sys_config.runtime_config.actual_ticker
        self.dic[PSC.NAME] = self.sys_config.runtime_config.actual_ticker_name
        self.dic[PSC.PATTERN] = pattern.pattern_type
        self.dic[PSC.BEGIN_PREVIOUS] = 'TODO'
        self.dic[PSC.BEGIN] = MyDate.get_date_from_datetime(pattern.date_first)
        self.dic[PSC.END] = MyDate.get_date_from_datetime(pattern.date_last)
        self.dic[PSC.LOWER] = round(0, 2)
        self.dic[PSC.UPPER] = round(0, 2)  # TODO Lower & Upper bound for statistics
        slope_upper, slope_lower, slow_regression = pattern.part_entry.get_slope_values()
        self.dic[PSC.SLOPE_UPPER] = slope_upper
        self.dic[PSC.SLOPE_LOWER] = slope_lower
        self.dic[PSC.SLOPE_RELATION] = 0
        self.dic[PSC.TICKS] = pattern.part_entry.ticks
        if pattern.was_breakout_done():
            self.dic[PSC.BREAKOUT_DATE] = MyDate.get_date_from_datetime(pattern.breakout.breakout_date)
            self.dic[PSC.BREAKOUT_DIRECTION] = pattern.breakout.breakout_direction
            self.dic[PSC.VOLUME_CHANGE] = pattern.breakout.volume_change_pct
            if pattern.is_part_trade_available():
                self.dic[PSC.EXPECTED] = pattern.trade_result.expected_win
                self.dic[PSC.RESULT] = pattern.trade_result.actual_win
                self.dic[PSC.VAL] = pattern.trade_result.formation_consistent
                self.dic[PSC.EXT] = pattern.trade_result.limit_extended_counter
                self.dic[PSC.BOUGHT_AT] = round(pattern.trade_result.bought_at, 2)
                self.dic[PSC.SOLD_AT] = round(pattern.trade_result.sold_at, 2)
                self.dic[PSC.BOUGHT_ON] = MyDate.get_date_from_datetime(pattern.trade_result.bought_on)
                self.dic[PSC.SOLD_ON] = MyDate.get_date_from_datetime(pattern.trade_result.sold_on)
                self.dic[PSC.T_NEEDED] = pattern.trade_result.actual_ticks
                self.dic[PSC.LIMIT] = round(pattern.trade_result.limit, 2)
                self.dic[PSC.STOP_LOSS_AT] = round(pattern.trade_result.stop_loss_at, 2)
                self.dic[PSC.STOP_LOSS_TRIGGERED] = pattern.trade_result.stop_loss_reached
                if pattern.part_trade is not None:
                    self.dic[PSC.RESULT_DF_MAX] = pattern.part_trade.max
                    self.dic[PSC.RESULT_DF_MIN] = pattern.part_trade.min
                self.dic[PSC.FIRST_LIMIT_REACHED] = False  # default
                self.dic[PSC.STOP_LOSS_MAX_REACHED] = False  # default
                if pattern.breakout_direction == FD.ASC \
                        and (pattern.part_entry.bound_upper + pattern.part_entry.height < self.dic[PSC.RESULT_DF_MAX]):
                    self.dic[PSC.FIRST_LIMIT_REACHED] = True
                if pattern.breakout_direction == FD.DESC \
                        and (pattern.part_entry.bound_lower - pattern.part_entry.height > self.dic[PSC.RESULT_DF_MIN]):
                    self.dic[PSC.FIRST_LIMIT_REACHED] = True
                if pattern.breakout_direction == FD.ASC \
                        and (pattern.part_entry.bound_lower > self.dic[PSC.RESULT_DF_MIN]):
                    self.dic[PSC.STOP_LOSS_MAX_REACHED] = True
                if pattern.breakout_direction == FD.DESC \
                        and (pattern.part_entry.bound_upper < self.dic[PSC.RESULT_DF_MAX]):
                    self.dic[PSC.STOP_LOSS_MAX_REACHED] = True

        new_entry = [self.dic[column] for column in self.column_list]
        self.list.append(new_entry)