Beispiel #1
0
def client_clone(id, idx):
    bc = BertClient(port=int(sys.argv[1]),
                    port_out=int(sys.argv[2]),
                    identity=id)
    for j in bc.listen():
        print('clone-client-%d: received %d x %d' %
              (idx, j.shape[0], j.shape[1]))
Beispiel #2
0
 def run(self):
     time_all = []
     bc = BertClient(port=PORT, show_server_config=False)
     for _ in range(self.num_repeat):
         start_t = time.perf_counter()
         bc.encode(self.batch)
         time_all.append(time.perf_counter() - start_t)
     print(time_all)
     self.avg_time = mean(time_all)
    def __init__(self, args):
        super().__init__()
        self.batch = [
            ''.join(
                random.choices(string.ascii_uppercase + string.digits,
                               k=args.client_seq_len))
            for _ in args.client_batch_size
        ]

        self.bc = BertClient()
        self.num_repeat = args.num_repeat
        self.avg_time = 0
def test():
    print("Loading test data...")
    start_time = time.time()
    x_test = process_file_nolabel(test_dir, word_to_id, config.seq_length)
    bc = BertClient()
    x_test = bc.encode(x_test)
    # (test 2364, 80)
    session = tf.Session()
    session.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(sess=session, save_path=save_path)  # 读取保存的模型

    # print('Testing...')
    # loss_test, acc_test = evaluate(session, x_test, y_test)
    # msg = 'Test Loss: {0:>6.2}, Test Acc: {1:>7.2%}'
    # print(msg.format(loss_test, acc_test))

    batch_size = 32
    data_len = len(x_test)
    num_batch = int((data_len - 1) / batch_size) + 1

    # y_test_cls = np.argmax(y_test, 1)
    y_pred_cls = np.zeros(shape=len(x_test), dtype=np.int32)  # 保存预测结果
    for i in range(num_batch):  # 逐批次处理
        start_id = i * batch_size
        end_id = min((i + 1) * batch_size, data_len)
        feed_dict = {
            model.input_x: x_test[start_id:end_id],
            model.keep_prob: 1.0
        }
        y_pred_cls[start_id:end_id] = session.run(model.y_pred_cls, feed_dict=feed_dict)

    # 评估
    print("Precision, Recall and F1-Score...")
    # print(metrics.classification_report(y_test_cls, y_pred_cls, target_names=categories))

    # 混淆矩阵
    print("Confusion Matrix...")
    # cm = metrics.confusion_matrix(y_test_cls, y_pred_cls)
    # print(cm)

    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)
    return y_pred_cls
class BenchmarkClient(threading.Thread):
    def __init__(self, args):
        super().__init__()
        self.batch = [
            ''.join(
                random.choices(string.ascii_uppercase + string.digits,
                               k=args.client_seq_len))
            for _ in args.client_batch_size
        ]

        self.bc = BertClient()
        self.num_repeat = args.num_repeat
        self.avg_time = 0

    def run(self):
        time_all = []
        for _ in range(self.num_repeat):
            start_t = time.clock()
            self.bc.encode(self.batch)
            time_all.append(time.clock() - start_t)
        self.avg_time = mean(time_all)
Beispiel #6
0
 def gen():
     while not self.exit_flag.is_set():
         client_id, msg = worker.recv_multipart()
         msg = jsonapi.loads(msg)
         self.logger.info('new job %s, size: %d' % (client_id, len(msg)))
         if BertClient.is_valid_input(msg):
             tmp_f = list(convert_lst_to_features(msg, self.max_seq_len, self.tokenizer))
             yield {
                 'client_id': client_id,
                 'input_ids': [f.input_ids for f in tmp_f],
                 'input_mask': [f.input_mask for f in tmp_f],
                 'input_type_ids': [f.input_type_ids for f in tmp_f]
             }
         else:
             self.logger.error('unsupported type of job %s! sending back None' % client_id)
Beispiel #7
0
 def gen():
     while not self.exit_flag.is_set():
         self.dest, empty, msg = worker.recv_multipart()
         self._start_t = time.perf_counter()
         msg = pickle.loads(msg)
         if BertClient.is_valid_input(msg):
             tmp_f = list(
                 convert_lst_to_features(msg, self.max_seq_len,
                                         self.tokenizer))
             yield {
                 'input_ids': [f.input_ids for f in tmp_f],
                 'input_mask': [f.input_mask for f in tmp_f],
                 'input_type_ids': [f.input_type_ids for f in tmp_f]
             }
         else:
             logger.warning(
                 'worker %s: received unsupported type! sending back None'
                 % self.dest)
             worker.send_multipart([self.dest, b'', b''])
     worker.close()
Beispiel #8
0
 def gen():
     while not self.exit_flag.is_set():
         client_id, empty, msg = worker.recv_multipart()
         msg = pickle.loads(msg)
         self.logger.info('received %4d from %s' %
                          (len(msg), client_id))
         if BertClient.is_valid_input(msg):
             tmp_f = list(
                 convert_lst_to_features(msg, self.max_seq_len,
                                         self.tokenizer))
             yield {
                 'client_id': client_id,
                 'input_ids': [f.input_ids for f in tmp_f],
                 'input_mask': [f.input_mask for f in tmp_f],
                 'input_type_ids': [f.input_type_ids for f in tmp_f]
             }
         else:
             self.logger.warning(
                 'received unsupported type from %s! sending back None'
                 % client_id)
             worker.send_multipart([client_id, b'', b''])
     worker.close()
Beispiel #9
0
# using BertClient in multicast way

import sys
import threading

from service.client import BertClient


def client_clone(id, idx):
    bc = BertClient(port=int(sys.argv[1]),
                    port_out=int(sys.argv[2]),
                    identity=id)
    for j in bc.listen():
        print('clone-client-%d: received %d x %d' %
              (idx, j.shape[0], j.shape[1]))


if __name__ == '__main__':
    bc = BertClient(port=int(sys.argv[1]), port_out=int(sys.argv[2]))
    # start two cloned clients sharing the same identity as bc
    for j in range(2):
        t = threading.Thread(target=client_clone, args=(bc.identity, j))
        t.start()

    with open('README.md') as fp:
        data = [v for v in fp if v.strip()]

    for _ in range(3):
        vec = bc.encode(data)
        print('bc received %d x %d' % (vec.shape[0], vec.shape[1]))
Beispiel #10
0
import sys

from service.client import BertClient


def send_without_block(bc, data, repeat=10):
    # encoding without blocking:
    print('sending all data without blocking...')
    for _ in range(repeat):
        bc.encode(data, blocking=False)
    print('all sent!')


if __name__ == '__main__':
    bc = BertClient(port=int(sys.argv[1]), port_out=int(sys.argv[2]))
    num_repeat = 20

    with open('README.md') as fp:
        data = [v for v in fp if v.strip()]

    send_without_block(bc, data, num_repeat)

    num_expect_vecs = len(data) * num_repeat

    # then fetch all
    print('now waiting until all results are available...')
    vecs = bc.fetch_all(concat=True)
    print('received %s, expected: %d' % (vecs.shape, num_expect_vecs))

    # now send it again
import sys
import time

from service.client import BertClient

if __name__ == '__main__':
    bc = BertClient(ip='localhost', port=int(sys.argv[1]))
    # encode a list of strings
    with open('README.md', encoding='utf8') as fp:
        data = [v for v in fp if v.strip()]

    for j in range(1, 200, 10):
        start_t = time.time()
        tmp = data * j
        bc.encode(tmp)
        time_t = time.time() - start_t
        print('encoding %d strs in %.2fs, speed: %d/s' %
              (len(tmp), time_t, int(len(tmp) / time_t)))
    # bad example: encode a string
    # print(ec.encode('abc'))
Beispiel #12
0
def Reward(config, Character_data, QA_data, vocab, embd):
    batch_size = config.batch_size
    vocab_size = len(vocab)
    num_units = config.num_units
    beam_width = config.beam_width
    Bidirection = config.Bidirection
    Embd_train = config.Embd_train
    Attention = config.Attention
    discount_factor = config.discount_factor
    dropout = config.dropout
    char_num = config.char_num
    char_dim = config.char_dim
    char_hidden_units = config.char_hidden_units
    Seq2Seq_pretain_ckp = config.seq2seq_ckp_dir
    QA_pretain_ckp = config.QA_ckp_dir
    model_cond = "training"
    G_Seq2Seq = tf.Graph()
    sess_word_rw = tf.Session(graph=G_Seq2Seq)
    with G_Seq2Seq.as_default():
        Seq2Seq_model = CharacterBA.Char_Seq2Seq(batch_size, vocab_size,
                                                 num_units, embd, model_cond,
                                                 Bidirection, Embd_train,
                                                 char_hidden_units, Attention,
                                                 char_num, char_dim)
        saver_word_rw = tf.train.Saver()
        saver_word_rw.restore(sess_word_rw, Seq2Seq_pretain_ckp)

    model_type = "testing"
    G_QA_similiarity = tf.Graph()
    sess_QA_rw = tf.Session(graph=G_QA_similiarity)
    with G_QA_similiarity.as_default():
        QA_simi_model = QA_similiarity.QA_similiarity(batch_size, num_units,
                                                      embd, model_type)
        saver_sen_rw = tf.train.Saver()
        saver_sen_rw.restore(sess_QA_rw, QA_pretain_ckp)

    source_shuffle, source_len, source_emd, whole_noisy_char_Id, char_len, generated_sen, sen_len_batch_beam, generated_target_len, bert_emd = Character_data
    logits_reward_beam = []
    # print "the generated_sen shape: ", generated_sen.shape
    # print "sen_len_batch_beam: ", sen_len_batch_beam.shape
    # print "bert_emd: ", bert_emd.shape
    for i in range(beam_width):
        fd_seq = {
            Seq2Seq_model.encoder_inputs:
            source_shuffle,
            Seq2Seq_model.encoder_inputs_length:
            source_len,
            Seq2Seq_model.encoder_emb:
            source_emd,
            Seq2Seq_model.encoder_char_ids:
            whole_noisy_char_Id,
            Seq2Seq_model.encoder_char_len:
            char_len,
            Seq2Seq_model.decoder_inputs:
            generated_sen[:, :, i],
            Seq2Seq_model.decoder_length:
            sen_len_batch_beam[:, i],
            # Seq2Seq_model.target_emb: bert_emd,
            Seq2Seq_model.dropout_rate:
            dropout
        }
        logits_reward_beam.append(
            sess_word_rw.run(Seq2Seq_model.softmax_logits, fd_seq))

    answer_shuffle, answer_len, source_shuffle, source_len, source_emd, generated_sen, sen_len_batch_beam, bert_emd, vocab = QA_data
    EOS = 1
    answer_shuffle = tf.keras.preprocessing.sequence.pad_sequences(
        answer_shuffle, maxlen=None, padding='post', value=EOS)
    QA_reward_beam = []
    for i in range(beam_width):
        fd_qa = {
            QA_simi_model.answer_inputs: answer_shuffle,
            QA_simi_model.answer_inputs_length: answer_len,
            QA_simi_model.question1_inputs: source_shuffle,
            QA_simi_model.question1_inputs_length: source_len,
            QA_simi_model.question2_inputs: generated_sen[:, :, i],
            QA_simi_model.question2_inputs_length: sen_len_batch_beam[:, i],
            QA_simi_model.question1_emd: source_emd,
            QA_simi_model.question2_emd: bert_emd[:, i, :, :]
        }  #[]
        QA_reward_beam.append(
            sess_QA_rw.run([QA_simi_model.two_distance], fd_qa))

    # print "the shape logits_reward_beam", np.array(logits_reward_beam).shape

    logits_reward_beam = np.array(logits_reward_beam).reshape(
        batch_size * beam_width, generated_target_len, vocab_size)
    QA_reward_beam = np.array(QA_reward_beam).reshape(batch_size * beam_width)
    generated_sen = np.array(generated_sen).reshape(batch_size * beam_width,
                                                    generated_target_len)
    # print "the shape of generated_sen ", generated_sen.shape
    logits_batch_beam = []
    for b in range(batch_size * beam_width):
        logits_batch = []
        for l in range(generated_target_len):
            id = generated_sen[b][l]
            logits_v = logits_reward_beam[b][l][id]
            logits_batch.append(logits_v)
        logits_batch_beam.append(logits_batch)

    bc = BertClient(port=4445, port_out=4446)
    gen_sen = []
    for idx in range(batch_size * beam_width):
        sen = []
        for l in range(generated_target_len):
            sen.append(vocab[int(generated_sen[idx][l])])
        gen_sen.append(" ".join(sen))
    bert_pro_beam = bc.encode(gen_sen)
    bert_pro_beam = bert_pro_beam[:, 1:generated_target_len + 1, :]

    bert_weight_path = config.bert_weight_path
    if os.path.isfile(bert_weight_path):
        f = open(bert_weight_path, "rb")
        data = pickle.load(f)
        output_weights = data["bert_W"]
        output_bias = data["bert_b"]
        output_weights = np.transpose(output_weights)
        logits = np.matmul(bert_pro_beam, output_weights)
        logits = np.add(logits, output_bias)
        log_probs = np.divide(
            np.exp(logits),
            np.tile(np.sum(np.exp(logits), axis=2),
                    output_bias.shape[0]).reshape(logits.shape[0],
                                                  logits.shape[1],
                                                  logits.shape[2]))
        # print "the size of log_probs", log_probs.shape
        # tf.nn.log_softmax(logits, axis=-1)

        bert_Id, bert_vocab_size = bert_vocab_map_Id(generated_sen, config,
                                                     vocab)

        bert_reward_beam = []
        for i in range(batch_size * beam_width):
            bert_reward = []
            for j in range(generated_target_len):
                bert_reward.append(log_probs[i][j][bert_Id[i][j]])
            bert_reward_beam.append(bert_reward)

    # bert_reward_beam =[]
    # for i in range(beam_width):
    #     gen_sen =[]
    #     for b in range(batch_size):
    #         sen = []
    #         for l in range(generated_sen.shape[1]):
    #             sen.append(vocab[int(generated_sen[b][l][i])])
    #         gen_sen.append(" ".join(sen))
    #     bert_pro = bc.encode(gen_sen)
    #     bert_pro = bert_pro[:,:generated_target_len,:]
    #
    #     bert_weight_path = config.bert_weight_path
    #     if os.path.isfile(bert_weight_path):
    #         f=open(bert_weight_path,"rb")
    #         data = pickle.load(f)
    #         output_weights = data["bert_W"]
    #         output_bias = data["bert_b"]
    #         output_weights = np.transpose(output_weights)
    #         logits = np.matmul(bert_pro, output_weights)
    #         logits = np.add(logits, output_bias)
    #         log_probs = np.divide(np.exp(logits),np.tile(np.sum(np.exp(logits), axis=2),output_bias.shape[0]).reshape(logits.shape[0],logits.shape[1],logits.shape[2]))
    #             # tf.nn.log_softmax(logits, axis=-1)
    #
    #         bert_Id = bert_vocab_map_Id(generated_sen, config, vocab)
    #
    #         bert_reward_beam = []
    #         for i in range(batch_size * beam_width):
    #             bert_reward = []
    #             for j in range(generated_target_len):
    #                 bert_reward.append(log_probs[i][j][bert_Id[i][j]])
    #             bert_reward_beam.append(bert_reward)

    RL_reward_beam_dis = []
    for beam in range(beam_width * batch_size):
        RL_reward = []
        for idx in range(generated_target_len):
            if idx != len(logits_batch_beam[beam]) - 1:
                RL_reward.append(vocab_size * logits_batch_beam[beam][idx] +
                                 bert_vocab_size * bert_reward_beam[beam][idx])
            elif idx == len(logits_batch_beam[beam]) - 1:
                RL_reward.append(vocab_size * logits_batch_beam[beam][idx] +
                                 bert_vocab_size *
                                 bert_reward_beam[beam][idx] +
                                 10 * QA_reward_beam[beam])
        RL_reward_batch_dis = discounted_rewards_cal(RL_reward,
                                                     discount_factor)
        RL_reward_beam_dis.append(RL_reward_batch_dis)

    RL_reward_beam_dis = np.array(RL_reward_beam_dis).reshape(
        batch_size, beam_width, generated_target_len)
    RL_reward_beam_dis_mm = RL_reward_beam_dis - np.tile(
        np.mean(RL_reward_beam_dis, axis=1),
        (beam_width, 1)).reshape(batch_size, beam_width, generated_target_len)
    # print "the RL_reward_dis: ", np.mean(RL_reward_beam_dis_mm)
    RL_reward_beam_dis_mm = np.transpose(RL_reward_beam_dis_mm, (1, 0, 2))

    return RL_reward_beam_dis_mm
Beispiel #13
0
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import codecs
import simplejson as json
import numpy as np
import _pickle as pickle
import gzip
import math

from bert import tokenization
import tensorflow as tf

from service.client import BertClient
bc = BertClient()

flags = tf.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("input_file", None, "")
flags.DEFINE_string("output_file", None, "")
flags.DEFINE_integer("batch_size", None, 128)
flags.DEFINE_integer("bs_per_shard", None, 100)


def main(argv):
    tokenizer = tokenization.FullTokenizer(
        vocab_file="../uncased_L-24_H-1024_A-16/vocab.txt")

    data = open(FLAGS.input_file, 'r').read().strip().split('\n')
    print('data size:', len(data))
Beispiel #14
0
import GPUtil
import tensorflow as tf

from service.client import BertClient

os.environ['CUDA_VISIBLE_DEVICES'] = str(GPUtil.getFirstAvailable())

train_fp = [
    '/data/cips/data/lab/data/dataset/final_all_data/exercise_contest/data_train.json'
]
batch_size = 256
num_parallel_calls = 4
num_concurrent_clients = 10  # should be greater than `num_parallel_calls`

bc_clients = [
    BertClient(show_server_config=False) for _ in range(num_concurrent_clients)
]


def get_encodes(x):
    # x is `batch_size` of lines, each of which is a json object
    samples = [json.loads(l) for l in x]
    text = [s['fact'][-50:] for s in samples]
    # get a client from available clients
    bc_client = bc_clients.pop()
    features = bc_client.encode(text)
    # after use, put it back
    bc_clients.append(bc_client)
    labels = [0 for _ in text]
    return features, labels
Beispiel #15
0
# using BertClient in sync way

import sys
import time

from service.client import BertClient

if __name__ == '__main__':
    bc = BertClient(port=int(sys.argv[1]), port_out=int(sys.argv[2]))
    # encode a list of strings
    with open('README.md') as fp:
        data = [v for v in fp if v.strip()]

    for j in range(1, 200, 10):
        start_t = time.time()
        tmp = data * j
        bc.encode(tmp)
        time_t = time.time() - start_t
        print('encoding %d strs in %.2fs, speed: %d/s' % (len(tmp), time_t, int(len(tmp) / time_t)))
Beispiel #16
0
# %% Check nn.Linear results with Matrix Multiplication.
import torch
import torch.nn as nn

a = torch.ones([1, 76])
b = nn.Linear(76, 76)
w = list(b.parameters())

print(b(a) == a @ w[0].transpose(-2, -1) + w[1])

# %% Cosine distance for Various Vectors.
from scipy import spatial
from service.client import BertClient

bc = BertClient(ip='xxx', port=3004, port_out=3005)
sentences = [
    '나 는 너 를 사랑 하다 여',
    '나 는 너 를 사랑 하다 였 다',
    '사랑 누 가 말하다 였 나',
]
(q_length, q_tokens, q_embedding, q_ids) = bc.encode(sentences)

love_1 = q_embedding[0][5]
love_2 = q_embedding[1][5]
love_3 = q_embedding[2][1]

print(spatial.distance.cdist([love_2, love_3], [love_1], metric='cosine'))
print(spatial.distance.cdist([love_2 + love_3], [love_1], metric='cosine'))
print(spatial.distance.cdist([love_2 * 10 + love_3], [love_1],
                             metric='cosine'))
Beispiel #17
0
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Han Xiao <*****@*****.**> <https://hanxiao.github.io>

# using BertClient in async way

import sys

from service.client import BertClient


# an endless data stream, generating data in an extremely fast speed
def text_gen():
    while True:
        yield data


if __name__ == '__main__':
    bc = BertClient(port=int(sys.argv[1]), port_out=int(sys.argv[2]))

    with open('README.md') as fp:
        data = [v for v in fp if v.strip()]

    # get encoded vectors
    for j in bc.encode_async(text_gen(), max_num_batch=10):
        print('received %d x %d' % (j.shape[0], j.shape[1]))
Beispiel #18
0
import time

from service.client import BertClient

if __name__ == '__main__':
    bc = BertClient(ip='localhost', port=5555)
    # encode a list of strings
    with open('README.md', encoding='utf8') as fp:
        data = [v for v in fp if v.strip()]

    for j in range(1, 200, 10):
        start_t = time.time()
        tmp = data * j
        bc.encode(tmp)
        time_t = time.time() - start_t
        print('encoding %d strs in %.2fs, speed: %d/s' %
              (len(tmp), time_t, int(len(tmp) / time_t)))
    # bad example: encode a string
    # print(ec.encode('abc'))
Beispiel #19
0
import os

import GPUtil
import tensorflow as tf

from service.client import BertClient

os.environ['CUDA_VISIBLE_DEVICES'] = str(GPUtil.getFirstAvailable()[0])
tf.logging.set_verbosity(tf.logging.INFO)

with open('README.md') as fp:
    data = [v for v in fp if v.strip()]
    bc = BertClient()
    list_vec = bc.encode(data)
    list_label = [0 for _ in data]  # a dummy list of all-zero labels

# write tfrecords

with tf.python_io.TFRecordWriter('tmp.tfrecord') as writer:

    def create_float_feature(values):
        return tf.train.Feature(float_list=tf.train.FloatList(value=values))

    def create_int_feature(values):
        return tf.train.Feature(int64_list=tf.train.Int64List(
            value=list(values)))

    for (vec, label) in zip(list_vec, list_label):
        features = {
            'features': create_float_feature(vec),
            'labels': create_int_feature([label])
from service.client import BertClient

bc = BertClient()
s = ['你好。', '嗨!', '今日我本来打算去公园。']
a = bc.encode(s)
# a = bc.encode(['Today is good.'])
print(a.shape)
# print(s.type)
print(a[0][1].shape)
print(a[0][1])
print(a[0][4])
print(a[1][3])
print(a[0][5])
def main():
    # 汽车观点提取,分过词的数据
    # df_train = pd.read_csv('./data/ccf_car_train.csv')
    # df_test = pd.read_csv('./data/ccf_car_test.csv')
    # train = df_train['word_seg']
    # test_x = df_test['content']
    # target = df_train['class']
    # train = np.array(train)
    # target = np.array(target)
    # list = []
    # for i in target:
    #     list.append(i)
    bc = BertClient()
    train = np.load('./data/train_x.npy')
    train = list(train)
    train = bc.encode(train)
    target = np.load('./data/train_y.npy')
    test_x = np.load('./data/test_x.npy')
    test_y = np.load('./data/test_y.npy')

    test_x = list(test_x)
    test_x = bc.encode(test_x)
    # 分为训练集和测试的时候加上
    # train, test_x, target, test_y = train_test_split(train, target, test_size = 0.15, random_state = 0)
    # np.savetxt('./data/train_x', train_X, fmt='%s')
    # np.savetxt('./data/train_y', train_y, fmt='%s')
    # np.savetxt('./data/test_X', test_X, fmt='%s')
    # np.savetxt('./data/test_y', test_y, fmt='%s')
    # df_test = pd.read_csv(test_file)
    # df_train = df_train.drop(['article'], axis=1)
    # df_test = df_test.drop(['article'], axis=1)
    # ngram_range:tuple (min_n, max_n) 要提取的不同n-gram的n值范围的下边界和上边界。 将使用n的所有值,使得min_n <= n <= max_n。
    # max_features: 构建一个词汇表,该词汇表仅考虑语料库中按术语频率排序的最高max_features
    # if feature == 'Count':
    #     vectoriser = CountVectorizer(ngram_range=(1, 2), min_df = 3)
    # elif feature == 'Tfidf':
    #     vectoriser = TfidfVectorizer(ngram_range=(1, 5), min_df = 3, max_df = 0.7)
    # # 构建特征,先训练
    # vectoriser.fit(train)
    # 训练完进行归一化  总共有315503个词,过滤小于3的,剩下23546, max_df 貌似没用
    # (7957, 2082), (1990, 2082) type:crs_matrix
    # train_X = vectoriser.transform(train)
    # test_X = vectoriser.transform(test_x)
    # y_train = df_train['class'] - 1
    # train_X = np.array(train_X.data).reshape(train_X.shape)

    # 开始构建分类器
    if classfier == 'LR':
        '''
        c:正则化系数λ的倒数,float类型,默认为1.0。必须是正浮点型数。像SVM一样,越小的数值表示越强的正则化
        '''
        rg = LogisticRegression(C=1)
        rg.fit(train, target)
        y_pred = rg.predict(test_x)
        # elif classfier == 'NB':
        #     # 使用默认的配置对分类器进行初始化。
        #     mnb_count = MultinomialNB(alpha=0.2)
        #     # 使用朴素贝叶斯分类器,对CountVectorizer(不去除停用词)后的训练样本进行参数学习。
        #     mnb_count.fit(train_X, target)
        #     y_pred = mnb_count.predict(test_X)
        #
        # elif classfier =='tree':
        #     DT = tree.DecisionTreeClassifier()
        #     DT.fit(train_X, target)
        #     y_pred = DT.predict(test_X)
        '''
            kernel='linear'时,为线性核,C越大分类效果越好,但有可能会过拟合(defaul C=1)。

           kernel='rbf'时(default),为高斯核,gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好,但有可能会过拟合。
        '''
    # C=0.1 准确率高召回率低   C = 0.8
    # elif classfier =='RT':
    #     sv = RandomForestClassifier(n_estimators=400)
    #     sv.fit(train_X, target)
    #     # y_hat = sv.predict(train_X)
    #     y_pred = sv.predict(test_X)
    #     scores = cross_val_score(sv, train_X, target, cv=5)
    #     print(scores)
    # 从sklearn.metrics 导入 classification_report。

    # 输出更加详细的其他评价分类性能的指标。
    print('classifier is : ' + classfier + '\tFeature is : ' + feature)
    print(classification_report(test_y, y_pred))
Beispiel #22
0
from service.client import BertClient

os.environ['CUDA_VISIBLE_DEVICES'] = str(GPUtil.getFirstAvailable()[0])
tf.logging.set_verbosity(tf.logging.INFO)

train_fp = [
    '/data/cips/data/lab/data/dataset/final_all_data/exercise_contest/data_train.json'
]
eval_fp = [
    '/data/cips/data/lab/data/dataset/final_all_data/exercise_contest/data_test.json'
]
batch_size = 64
num_parallel_calls = 4
num_concurrent_clients = num_parallel_calls * 2  # should be at least greater than `num_parallel_calls`

bc_client = BertClient(show_server_config=False, port=5557, port_out=5558)

# hardcoded law_ids
laws = [
    184, 336, 314, 351, 224, 132, 158, 128, 223, 308, 341, 349, 382, 238, 369,
    248, 266, 313, 127, 340, 288, 172, 209, 243, 302, 200, 227, 155, 147, 143,
    261, 124, 359, 343, 291, 241, 235, 367, 393, 274, 240, 269, 199, 119, 246,
    282, 133, 177, 170, 310, 364, 201, 312, 244, 357, 233, 236, 264, 225, 234,
    328, 417, 151, 135, 136, 348, 217, 168, 134, 237, 262, 150, 114, 196, 303,
    191, 392, 226, 267, 272, 212, 353, 315, 205, 372, 215, 350, 275, 385, 164,
    338, 292, 159, 162, 333, 388, 356, 375, 326, 402, 397, 125, 395, 290, 176,
    354, 185, 141, 279, 399, 192, 383, 307, 295, 361, 286, 404, 390, 294, 115,
    344, 268, 171, 117, 273, 193, 418, 220, 198, 231, 386, 363, 346, 210, 270,
    144, 347, 280, 281, 118, 122, 116, 360, 239, 228, 305, 130, 152, 389, 276,
    213, 186, 413, 285, 316, 245, 232, 175, 149, 263, 387, 283, 391, 211, 396,
    352, 345, 258, 253, 163, 140, 293, 194, 342, 161, 358, 271, 156, 260, 384,
Beispiel #23
0
def RL_tuning_model(config):
    emd_file = config.nemd_dir, config.cemd_dir
    train_data, test_data, eval_data, vocab, embd = load_data(config.data_dir, emd_file, "BA")
    ##train_Id = [SOS] + clean_Id, ground_truth = clean_Id + [EOS], clean_len = get_length(ground_truth)

    train_noisy_Id, train_noisy_len, train_char_noisy_Id, train_char_noisy_len, train_nemd, train_target_Id, train_input_Id, train_clean_Id, train_clean_len, train_answer_Id, train_answer_len, max_char, max_word = train_data
    # noisy_Id, noisy_len, char_noisy_Id, char_noisy_len, ground_truth, train_Id, clean_Id, clean_len, answer_Id, answer_len, max_char, max_word = train_data
    test_noisy_Id, test_noisy_len, test_char_noisy_Id, test_char_noisy_len,test_nemd, test_ground_truth, test_train_Id, test_clean_Id, test_clean_len, test_answer_Id, test_answer_len = test_data
    # eval_noisy_Id, eval_noisy_len, eval_char_noisy_Id, eval_char_noisy_len,eval_target_Id, eval_input_Id, eval_clean_Id, eval_clean_len, eval_answer_Id, eval_answer_len =eval_data

    # config.max_target_length = max_word

    L = max_word
    embd = np.array(embd)
    batch_size =config.batch_size
    discount_factor = config.discount_factor
    sen_reward_rate = config.sen_reward_rate

    lam = config.lam
    gamma = config.gamma
    beam_width = config.beam_width
    update_N = config.update_N


    # config = tf.ConfigProto()
    # config.gpu_options.allow_growth = True

    model_name = "BS_"
    values = {}
    checkpoint_path = config.seq2seq_ckp_dir
    BS_ckp_dir = config.BS_ckp_dir
    reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
    var_to_shape_map = reader.get_variable_to_shape_map()
    for key in var_to_shape_map:
        if 'loss_fun' not in key:
            values[model_name + key + ':0'] = reader.get_tensor(key)

    vocab_size =len(vocab)

    G_BeamSearch = tf.Graph()
    with G_BeamSearch.as_default():
        BeamSearch_seq2seq = Network.BeamSearch_Seq2seq(config, embd, vocab_size, model_name)

    seq2seq_len = L

    with tf.Session(graph=G_BeamSearch) as sess_beamsearch:
        sess_beamsearch.run(tf.global_variables_initializer())

        for v in tf.trainable_variables():
            if v.name in values.keys():
                v.load(values[v.name], sess_beamsearch)

        for epo in range(config.epoch):
            print(" epoch: {}".format(epo))

            idx = np.arange(0, len(train_noisy_Id))
            idx = list(np.random.permutation(idx))

            Bleu_score1 = []
            Bleu_score2 = []
            Bleu_score3 = []
            Bleu_score4 = []
            Rouge_score = []
            Meteor_score = []
            Cider_score = []


            for batch in range(len(train_noisy_Id) / config.batch_size):

                source_shuffle, source_len, source_nemd, char_Id, char_len, train_shuffle, target_shuffle, target_len, answer_shuffle, answer_len = next_batch(
                    train_noisy_Id,
                    train_noisy_len,
                    train_nemd,
                    train_char_noisy_Id,
                    train_char_noisy_len,
                    train_input_Id,
                    train_target_Id,
                    train_clean_len,
                    train_answer_Id,
                    train_answer_len,
                    batch_size,
                    batch,
                    idx)

                source_shuffle = tf.keras.preprocessing.sequence.pad_sequences(source_shuffle, maxlen=max_word,
                                                                               padding='post', truncating="post",
                                                                               value=EOS)
                source_emd = []
                for n in source_nemd:
                    source_emd.append(n[0:source_shuffle.shape[1]])
                source_emd = np.asarray(source_emd)

                target_shuffle_in = tf.keras.preprocessing.sequence.pad_sequences(target_shuffle, maxlen=seq2seq_len,
                                                                               padding='post', truncating="post",
                                                                               value=EOS)
                # target_emd = []
                # for c in train_cemd:
                #     target_emd.append(c[0:train_shuffle.shape[1]])
                # target_emd = np.asarray(target_emd)

                train_shuffle = tf.keras.preprocessing.sequence.pad_sequences(train_shuffle, maxlen=seq2seq_len,
                                                                              padding='post', truncating="post",
                                                                              value=EOS)

                whole_noisy_char_Id = []
                for sen_char in char_Id:
                    sen_len = len(sen_char)
                    for i in range(len(source_shuffle[0]) - sen_len):
                        sen_char.append([0] * max_char)  ## fix the char with the length of max_word
                    whole_noisy_char_Id.append(sen_char)

                whole_noisy_char_Id = np.asarray(whole_noisy_char_Id)

                whole_char_len = []
                for char_List in char_len:
                    whole_char_len.append(char_List[:len(source_shuffle[0])])

                # initial_input_in = [target_shuffle_in[i][-1] for i in range(config.batch_size)]

                target_len = np.tile(seq2seq_len, config.batch_size)

                # print "the shape of source_shuffle ", np.array(source_shuffle).shape
                # print "the shape of source_len ", np.array(source_len).shape
                # print "the shape of source_emd ", np.array(source_emd).shape
                # print "the shape of whole_noisy_char_Id ", np.array(whole_noisy_char_Id).shape
                # print "the shape of whole_char_len ", np.array(whole_char_len).shape
                # print "the shape of target_len ", np.array(target_len).shape
                # print "the shape of train_shuffle ", np.array(train_shuffle).shape
                # print "the shape of target_shuffle_in ", np.array(target_shuffle_in).shape

                fd = {BeamSearch_seq2seq.encoder_inputs: source_shuffle,
                      BeamSearch_seq2seq.encoder_inputs_length: source_len,
                      BeamSearch_seq2seq.encoder_emb: source_emd,
                      BeamSearch_seq2seq.encoder_char_ids: whole_noisy_char_Id, BeamSearch_seq2seq.encoder_char_len: whole_char_len,
                      BeamSearch_seq2seq.decoder_length: target_len,
                      BeamSearch_seq2seq.decoder_inputs: train_shuffle,
                      # BeamSearch_seq2seq.target_emb: target_emd,
                      BeamSearch_seq2seq.decoder_targets: target_shuffle_in,
                      }
                if batch <= 100:
                    ids, _, loss_seq2seq = sess_beamsearch.run(
                        [BeamSearch_seq2seq.seq_ids, BeamSearch_seq2seq.train_op,BeamSearch_seq2seq.loss_seq2seq], fd)
                    if batch % 100 == 0:
                        print ('Batch {} Seq2seq_loss: '.format(batch),loss_seq2seq)

                    # noisy_sen = []
                    # for pre_id in source_shuffle[0]:
                    #     if pre_id != EOS and pre_id != PAD and pre_id != SOS:
                    #         noisy_sen.append(vocab[pre_id])
                    #
                    # clean_sen = []
                    # for clean_id in target_shuffle[0]:
                    #     if clean_id != EOS and clean_id != PAD and clean_id != SOS:
                    #         clean_sen.append(vocab[clean_id])
                    #
                    # gene_sen = []
                    # for gen_id in ids[0]:
                    #     if gen_id != EOS and gen_id != PAD and gen_id != SOS:
                    #         gene_sen.append(vocab[gen_id])
                    #
                    # print("question" + str(1) + "\n");
                    # print("noisy question: " + " ".join(noisy_sen) + "\n")
                    # print("clean question: " + " ".join(clean_sen) + "\n")
                    # print("generated question: " + " ".join(gene_sen) + "\n")

                elif batch > 100:

                    RL_logits, policy, values = sess_beamsearch.run([BeamSearch_seq2seq.predicting_logits, BeamSearch_seq2seq.predicting_scores, BeamSearch_seq2seq.value], fd)

                    # generated_que_input = np.insert(generated_que, 0, SOS, axis=1)[:, 0:-1]
                    # target_shuffle = tf.keras.preprocessing.sequence.pad_sequences(target_shuffle, maxlen=None,
                    #                                                                padding='post',truncating="post",  value=EOS)

                    generated_target_len = RL_logits.shape[1]

                    bc = BertClient(port=5555, port_out=5556)

                    generated_sen_beam = []
                    for beam in range(beam_width):
                        for b in range(batch_size):
                            sen = []
                            for l in range(RL_logits.shape[1]):
                                sen.append(vocab[int(RL_logits[b][l][beam])])
                            generated_sen_beam.append(" ".join(sen))

                    bert_emd_beam = bc.encode(generated_sen_beam)
                    # bert_emd =
                    # bert_emd_beam.append(bert_emd[:,:generated_target_len,:])
                    bert_emd_beam = bert_emd_beam[:,1:generated_target_len+1,:]
                    bert_emd_beam = bert_emd_beam.reshape(batch_size, beam_width, bert_emd_beam.shape[1], bert_emd_beam.shape[2])
                    sen_len_batch_beam = generated_target_len * np.ones((batch_size,beam_width))
                    # print "the shape of bert emd: ", bert_emd_beam.shape
                    #
                    #
                    # source_shuffle_beam = np.tile(source_shuffle, (beam_width, 1))
                    # source_len_beam = np.tile(source_len, (beam_width))
                    # source_emd_beam = np.tile(source_emd, (beam_width,1,1))
                    # print "the shape of source_emd_beam", source_emd_beam.shape
                    # whole_noisy_char_Id_beam = np.tile(whole_noisy_char_Id,(beam_width,1,1))
                    # whole_char_len_beam = np.tile(whole_char_len,(beam_width,1))
                    # print "the char_len: ", whole_char_len_beam.shape
                    # RL_logits_beam = np.transpose(RL_logits,(0,2,1)).reshape(batch_size*beam_width, generated_target_len)
                    #
                    # answer_shuffle_beam = np.tile(answer_shuffle,(beam_width,1))
                    # answer_len_beam = np.tile(answer_len, (beam_width))
                    #
                    # print "the shape of source_shuffle: ", source_shuffle_beam.shape
                    # print "the input of target: ", RL_logits_beam.shape
                    #
                    # # for beam in range(beam_width):
                    # #     sen_len_batch_beam = []
                    # #     for b in range(batch_size):
                    # #         sen_len_batch =[]
                    # #         l=0
                    # #         while (l < generated_target_len and RL_logits[b][l][beam] != 1):
                    # #             l = l + 1
                    # #         sen_len_batch.append(l)
                    # #     sen_len_batch_beam.append(sen_len_batch)
                    #
                    # Character_data= source_shuffle_beam,source_len_beam,source_emd_beam, whole_noisy_char_Id_beam, whole_char_len_beam, RL_logits_beam, sen_len_batch_beam, generated_target_len, bert_emd_beam
                    # QA_data = answer_shuffle_beam, answer_len_beam, source_shuffle_beam, source_len_beam, source_emd_beam, RL_logits_beam, sen_len_batch_beam, bert_emd_beam, vocab

                    Character_data = source_shuffle, source_len, source_emd, whole_noisy_char_Id, whole_char_len, RL_logits, sen_len_batch_beam, generated_target_len, bert_emd_beam
                    QA_data = answer_shuffle, answer_len, source_shuffle, source_len, source_emd, RL_logits, sen_len_batch_beam, bert_emd_beam, vocab

                    RL_rewards = Reward(config, Character_data, QA_data, vocab, embd)

                    values_t = np.transpose(values,(2,0,1))
                    values_t1 = np.transpose(values[:,1:,:],(2,0,1))
                    values_t1 = np.insert(values_t1, values_t1.shape[2], values=np.zeros(batch_size), axis=2)

                    Returns_beam =[]
                    Deltas_beam = []
                    for beam in range(len(RL_rewards)):
                        Returns_batch =[]
                        Deltas_batch = []
                        for batch_len in range(len(RL_rewards[1])):
                            returns, deltas = get_training_data(RL_rewards[beam][batch_len], values_t[beam][batch_len], values_t1[beam][batch_len], lam, gamma)
                            Returns_batch.append(returns)
                            Deltas_batch.append(deltas)
                        Returns_beam.append(Returns_batch)
                        Deltas_beam.append(Deltas_batch)

                    Returns_beam = np.transpose(Returns_beam,(1,2,0))
                    Deltas_beam = np.transpose(Deltas_beam,(1,2,0))

                    old_policy = policy
                    for N in range(update_N):
                        fd = {BeamSearch_seq2seq.returns_ph: Returns_beam, BeamSearch_seq2seq.advantages_ph: Deltas_beam,
                              BeamSearch_seq2seq.old_log_probs_ph: old_policy,
                              BeamSearch_seq2seq.encoder_inputs: source_shuffle,
                              BeamSearch_seq2seq.encoder_inputs_length: source_len,
                              BeamSearch_seq2seq.encoder_emb: source_emd,
                              BeamSearch_seq2seq.encoder_char_ids: whole_noisy_char_Id,
                              BeamSearch_seq2seq.encoder_char_len: whole_char_len,
                              BeamSearch_seq2seq.decoder_length: target_len,
                              BeamSearch_seq2seq.decoder_inputs: train_shuffle,
                              BeamSearch_seq2seq.decoder_targets: target_shuffle_in}
                        policy_l, entr_l, loss_ppo, ratio, _, policy= sess_beamsearch.run(
                            [BeamSearch_seq2seq.policy_loss, BeamSearch_seq2seq.entropy,
                              BeamSearch_seq2seq.loss, BeamSearch_seq2seq.ratio, BeamSearch_seq2seq.optimize_expr, BeamSearch_seq2seq.predicting_scores], fd)
                    print ('Batch {} PPO_loss: '.format(batch),loss_ppo)
                    # print (" The ratio is :", ratio)

                # for t in range(batch_size):
                #     ref = []
                #     hyp = []
                #     for tar_id in target_shuffle[t]:
                #         if tar_id != EOS and tar_id != PAD:
                #             ref.append(vocab[tar_id])
                #             # print vocab[tar_id]
                #     for pre_id in RL_logits[t]:
                #         if pre_id != EOS and pre_id != PAD:
                #             hyp.append(vocab[pre_id])
                #
                #     hyp_sen = u" ".join(hyp).encode('utf-8')
                #     ref_sen = u" ".join(ref).encode('utf-8')
                #     dic_hyp = {}
                #     dic_hyp[0] = [hyp_sen]
                #     dic_ref = {}
                #     dic_ref[0] = [ref_sen]
                #     sen_bleu, _ = Bleu_obj.compute_score(dic_ref, dic_hyp)
                #     sen_rouge = Rouge_obj.compute_score(dic_ref, dic_hyp)
                #     sen_meteor, _ = Meteor_obj.compute_score(dic_ref, dic_hyp)
                #     sen_cider, _ = cIDER_obj.compute_score(dic_ref, dic_hyp)
                #     Bleu_score1.append(sen_bleu[0])
                #     Bleu_score2.append(sen_bleu[1])
                #     Bleu_score3.append(sen_bleu[2])
                #     Bleu_score4.append(sen_bleu[3])
                #     Rouge_score.append(sen_rouge[0])
                #     Meteor_score.append(sen_meteor)
                #     Cider_score.append(sen_cider)
                #
                # if batch == 0 or batch % 100 == 0:
                #     print(' batch {}'.format(batch))
                #     print('   minibatch reward of training: {}'.format(- loss_ppo))
                #     #print the result
                #     for t in range(5):  ## five sentences
                #         print('Question {}'.format(t))
                #         print("noisy question:")
                #         print(" ".join(map(lambda i: vocab[i], list(source_shuffle[t]))).strip().replace("<EOS>"," "))
                #         print("clean question:")
                #         print(" ".join(map(lambda i: vocab[i], list(target_shuffle[t]))).strip().replace("<EOS>"," "))
                #         print("the generated first question:")
                #         pre_sen = []
                #         for log_id in RL_logits[t, :, 0]:
                #             if log_id != -1 and log_id!=2 and log_id!=0:
                #                 pre_sen.append(log_id)
                #         print(" ".join(map(lambda i: vocab[i], pre_sen)).strip())
                #         print("\n")
                #     print("\n Bleu_score1, Bleu_score2, Bleu_score3, Bleu_score4, Rouge,  Cider\n")
                #     print("   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f}".format(
                #         sum(Bleu_score1) / float(len(Bleu_score1)),
                #         sum(Bleu_score2) / float(len(Bleu_score2)),
                #         sum(Bleu_score3) / float(len(Bleu_score3)),
                #         sum(Bleu_score4) / float(len(Bleu_score4)),
                #         sum(Rouge_score) / float(len(Rouge_score)),
                #         sum(Meteor_score) / float(len(Meteor_score)),
                #         sum(Cider_score) / float(len(Cider_score))
                #     ))
                gc.collect()

                if (batch % 100 == 0 and batch < 100) or (batch % 20 == 0 and batch >100):
                    generated_test_sen = []
                    test_answer_sen = []
                    test_noisy_sen = []
                    test_clean_sen = []
                    # saver.save(sess_beamsearch, BS_ckp_dir)
                    ##testing set result:

                    for batch_test in range(len(test_noisy_Id) / batch_size):
                        idx_t = np.arange(0, len(test_noisy_Id))
                        idx_t = list(np.random.permutation(idx_t))


                        test_source_shuffle, test_source_len, test_source_nemd, test_char_Id, test_char_len_in, test_train_shuffle, test_target_shuffle, test_target_len, test_answer_shuffle, test_ans_len = next_batch(
                            test_noisy_Id, test_noisy_len, test_nemd, test_char_noisy_Id, test_char_noisy_len, test_train_Id, test_ground_truth, test_clean_len, test_answer_Id,
                        test_answer_len, batch_size, batch_test, idx_t)

                        for an in test_answer_shuffle:
                            test_answer_sen.append(vocab[anum] for anum in an)
                        for no in test_source_shuffle:
                            test_noisy_sen.append(vocab[si] for si in no)
                        for cl in test_target_shuffle:
                            test_clean_sen.append(vocab[ci] for ci in cl)

                        test_source_shuffle_in = tf.keras.preprocessing.sequence.pad_sequences(test_source_shuffle, maxlen = max_word,
                                                                                       padding='post', truncating="post",value=EOS)

                        test_source_emd = []
                        for n in test_source_nemd:
                            test_source_emd.append(n[0 : test_source_shuffle_in.shape[1]])
                        test_source_emd = np.asarray(test_source_emd)

                        val_target_shuffle_in=[]
                        for val in test_target_shuffle:
                            val_target_shuffle_in.append([val[0]])

                        val_train_shuffle_in = []
                        for tra in test_train_shuffle:
                            val_train_shuffle_in.append([tra[0]])

                        initial_input_in = [SOS for i in range(batch_size)]
                        # [SOS for i in range(batch_size)]

                        val_target_len_in = np.tile(1, batch_size)

                        test_batch_noisy_char_Id = []
                        for sen_char in test_char_Id:
                            sen_len = len(sen_char)
                            for i in range(len(test_source_shuffle_in[0]) - sen_len):
                                sen_char.append([0] * max_char)  ## fix the char with the length of max_word
                            test_batch_noisy_char_Id.append(sen_char)
                        test_batch_noisy_char_Id = np.asarray(test_batch_noisy_char_Id)

                        test_char_len = []
                        for char_List in test_char_len_in:
                            test_char_len.append(char_List[:len(test_source_shuffle_in[0])])
                        # print "the shape of test_noisy_char_Id ", np.array(test_batch_noisy_char_Id).shape
                        # if np.array(test_batch_noisy_char_Id).shape == (batch_size,):
                        #     continue
                        # print "the shape of test_char_len ", np.array(test_char_len).shape

                        # # print "the shape of source_shuffle ", np.array(test_source_shuffle_in).shape
                        # # print "the shape of source_len ", np.array(test_source_len).shape
                        # # print "the shape of source_emd ", np.array(test_source_emd).shape
                        # # print "the shape of whole_noisy_char_Id ", np.array(test_batch_noisy_char_Id).shape
                        # # print "the shape of whole_char_len ", np.array(test_char_len).shape

                        fd = {BeamSearch_seq2seq.encoder_inputs: test_source_shuffle_in,
                              BeamSearch_seq2seq.encoder_inputs_length: test_source_len,
                              BeamSearch_seq2seq.encoder_emb: test_source_emd,
                              BeamSearch_seq2seq.encoder_char_ids: test_batch_noisy_char_Id,
                              BeamSearch_seq2seq.encoder_char_len: test_char_len}

                        val_id = sess_beamsearch.run([BeamSearch_seq2seq.ids], fd)

                        for t in range(batch_size):
                            ref = []
                            hyp = []
                            for tar_id in test_target_shuffle[t]:
                                if tar_id != EOS and tar_id != PAD and tar_id != SOS:
                                    ref.append(vocab[tar_id])
                                    # print vocab[tar_id]
                            for pre_id in val_id[0][t]:
                                if pre_id != EOS and pre_id != PAD and pre_id != SOS:
                                    hyp.append(vocab[pre_id])
                            generated_test_sen.append(hyp)

                            hyp_sen = u" ".join(hyp).encode('utf-8')
                            ref_sen = u" ".join(ref).encode('utf-8')
                            dic_hyp = {}
                            dic_hyp[0] = [hyp_sen]
                            dic_ref = {}
                            dic_ref[0] = [ref_sen]
                            sen_bleu, _ = Bleu_obj.compute_score(dic_ref, dic_hyp)
                            sen_rouge = Rouge_obj.compute_score(dic_ref, dic_hyp)
                            sen_meteor, _ = Meteor_obj.compute_score(dic_ref, dic_hyp)
                            sen_cider, _ = cIDER_obj.compute_score(dic_ref, dic_hyp)
                            Bleu_score1.append(sen_bleu[0])
                            Bleu_score2.append(sen_bleu[1])
                            Bleu_score3.append(sen_bleu[2])
                            Bleu_score4.append(sen_bleu[3])
                            Rouge_score.append(sen_rouge[0])
                            Meteor_score.append(sen_meteor)
                            Cider_score.append(sen_cider)

                    print("\n Bleu_score1, Bleu_score2, Bleu_score3, Bleu_score4, Rouge,  Cider\n")
                    print("   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f}".format(
                        sum(Bleu_score1) / float(len(Bleu_score1)),
                        sum(Bleu_score2) / float(len(Bleu_score2)),
                        sum(Bleu_score3) / float(len(Bleu_score3)),
                        sum(Bleu_score4) / float(len(Bleu_score4)),
                        sum(Rouge_score) / float(len(Rouge_score)),
                        sum(Meteor_score) / float(len(Meteor_score)),
                        sum(Cider_score) / float(len(Cider_score))
                    ))
                    bleu_score = sum(Bleu_score1) / float(len(Bleu_score1))

                    for i in range(len(generated_test_sen[0:2])):
                        print("question"+str(i) + "\n")
                        print("answer: "+" ".join(test_answer_sen[i]) + "\n")
                        print("noisy question: " + " ".join(test_noisy_sen[i]) + "\n")
                        print("clean question: " + " ".join(test_clean_sen[i]) + "\n")
                        print("generated question: " + " ".join(generated_test_sen[i]) + "\n")

                    fname = BS_ckp_dir +str(bleu_score)
                    f=open(fname, "wb")
                    f.write("\n Bleu_score1, Bleu_score2, Bleu_score3, Bleu_score4, Rouge, Meteor  Cider\n")
                    f.write("   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f},   {:.4f} \n".format(
                        sum(Bleu_score1) / float(len(Bleu_score1)),
                        sum(Bleu_score2) / float(len(Bleu_score2)),
                        sum(Bleu_score3) / float(len(Bleu_score3)),
                        sum(Bleu_score4) / float(len(Bleu_score4)),
                        sum(Rouge_score) / float(len(Rouge_score)),
                        sum(Meteor_score) / float(len(Meteor_score)),
                        sum(Cider_score) / float(len(Cider_score))
                    ))
                    for i in range(len(generated_test_sen)):
                        f.write("question"+str(i) + "\n")
                        f.write("answer: "+" ".join(test_answer_sen[i]) + "\n")
                        f.write("noisy question: " + " ".join(test_noisy_sen[i]) + "\n")
                        f.write("clean question: " + " ".join(test_clean_sen[i]) + "\n")
                        f.write("generated question: " + " ".join(generated_test_sen[i]) + "\n")
                    network_vars = tf.get_collection(
                        tf.GraphKeys.TRAINABLE_VARIABLES, config.PPoscope)
                    saver = tf.train.Saver(sharded=False)
                    saver.save(sess_beamsearch, config.BS_ckp_dir)
Beispiel #24
0
from service.client import BertClient

bc = BertClient('ip = localhost')
vec = bc.encode(['hello world', 'good day'])