args.NU = 30
            args.target_v = 0.5
            args.boundary = [-0.6, 0.6, 0.3, 0.9, -0.6, 0.6]

            # mode 1 corresponds to fixed target
            args.MODE = 1

            env = Environment(
                final_time=args.final_time,
                num_steps_per_update=args.num_steps_per_update,
                number_of_control_points=args.number_of_control_points,
                alpha=args.alpha,
                beta=args.beta,
                COLLECT_DATA_FOR_POSTPROCESSING=not args.TRAIN,
                mode=args.MODE,
                target_position=args.target_position,
                target_v=args.target_v,
                boundary=args.boundary,
                E=args.E,
                sim_dt=args.sim_dt,
                n_elem=args.n_elem,
                NU=args.NU,
                num_obstacles=8,
                COLLECT_CONTROL_POINTS_DATA=not args.TRAIN,
            )

            name = str(args.algo_name) + "_Case3_id"
            identifer = (name + "-" + str(args.timesteps_per_batch) + "-" +
                         str(args.LAM) + "_" + str(args.SEED) + "_" +
                         str(args.act_fun_str) + "_" +
                         get_valid_filename(str(args.net_arch)))
Beispiel #2
0
max_rate_of_change_of_activation = np.infty
print("rate of change", max_rate_of_change_of_activation)

# If True, train. Otherwise run trained policy
args.TRAIN = True

env = Environment(
    final_time=final_time,
    num_steps_per_update=num_steps_per_update,
    number_of_control_points=number_of_control_points,
    alpha=args.alpha,
    beta=args.beta,
    COLLECT_DATA_FOR_POSTPROCESSING=not args.TRAIN,
    mode=args.mode,
    target_position=target_position,
    target_v=0.5,
    boundary=[-0.6, 0.6, 0.3, 0.9, -0.6, 0.6],
    E=1e7,
    sim_dt=sim_dt,
    n_elem=20,
    NU=30,
    num_obstacles=0,
    dim=3.0,
    max_rate_of_change_of_activation=max_rate_of_change_of_activation,
)

name = str(args.algo_name) + "_3d-tracking_id"
identifer = name + "-" + str(args.timesteps_per_batch) + "_" + str(args.SEED)

if args.TRAIN:
    log_dir = "./log_" + identifer + "/"
Beispiel #3
0
args.beta = 75
args.E = 1e7

args.NU = 30
args.target_v = 0.5
args.boundary = [-0.6, 0.6, 0.3, 0.9, -0.6, 0.6]

env = Environment(
    final_time=args.final_time,
    num_steps_per_update=args.num_steps_per_update,
    number_of_control_points=args.number_of_control_points,
    alpha=args.alpha,
    beta=args.beta,
    COLLECT_DATA_FOR_POSTPROCESSING=not args.TRAIN,
    mode=args.MODE,
    target_position=args.target_position,
    target_v=args.target_v,
    boundary=args.boundary,
    E=args.E,
    sim_dt=args.sim_dt,
    n_elem=args.n_elem,
    NU=args.NU,
    num_obstacles=12,
    GENERATE_NEW_OBSTACLES=True,
)

name = str(args.algo_name) + "_nested_regular_id-"
identifer = (name + str(args.mode) + "-" + str(args.number_of_control_points) +
             "_" + str(args.alpha) + "_" + str(args.NU) + "_" +
             str(args.total_timesteps) + "_" + str(args.timesteps_per_batch) +
             "_" + str(args.final_time) + "_" + str(args.SEED))