def super_categories(self): """ EXAMPLES:: sage: Groupoid(DihedralGroup(3)).super_categories() [Category of sets] """ return [Sets()] # ???
def super_categories(self): """ EXAMPLES:: sage: ModularAbelianVarieties(QQ).super_categories() [Category of sets] """ return [Sets()] # FIXME
def super_categories(self): """ EXAMPLES:: sage: Schemes().super_categories() [Category of sets] """ return [Sets()]
def super_categories(self): """ EXAMPLES:: sage: GSets(SymmetricGroup(8)).super_categories() [Category of sets] """ return [Sets()]
def super_categories(self): """ EXAMPLES:: sage: PointedSets().super_categories() [Category of sets] """ return [Sets()] # ???
def super_categories(self): """ EXAMPLES:: sage: Schemes().super_categories() [Category of sets] """ from sets_cat import Sets return [Sets()]
def super_categories(self): """ Return the super categories of ``self``. EXAMPLES:: sage: from sage.categories.homsets import Homsets sage: Homsets() Category of homsets """ from sets_cat import Sets return [Sets()]
def extra_super_categories(self): """ This declares that any homset `Hom(A, B)` for `A` and `B` in the category of objects is a set. This more or less assumes that the category is locally small. See http://en.wikipedia.org/wiki/Category_(mathematics) EXAMPLES:: sage: Objects().hom_category().extra_super_categories() [Category of sets] """ from sets_cat import Sets return [Sets()]