Beispiel #1
0
def one_simulation(material_type,
                   define_args,
                   coef_tension=0.25,
                   coef_compression=-0.25,
                   plot_mesh_bool=False,
                   return_load=False):

    #parser = ArgumentParser(description=__doc__,
    #                        formatter_class=RawDescriptionHelpFormatter)
    #parser.add_argument('--version', action='version', version='%(prog)s')
    #options = parser.parse_args()
    output.set_output(filename='sfepy_log.txt', quiet=True)

    required, other = get_standard_keywords()
    # Use this file as the input file.
    conf = ProblemConf.from_file(__file__,
                                 required,
                                 other,
                                 define_args=define_args)

    # Create problem instance, but do not set equations.
    problem = Problem.from_conf(conf, init_equations=False)
    if plot_mesh_bool:
        plot_mesh(problem)

    # Solve the problem. Output is ignored, results stored by using the
    # step_hook.
    linear_tension = partial(linear_pressure, coef=coef_tension)
    u_t = solve_branch(problem, linear_tension, material_type)
    linear_compression = partial(linear_pressure, coef=coef_compression)
    u_c = solve_branch(problem, linear_compression, material_type)

    # Get pressure load by calling linear_*() for each time step.
    ts = problem.get_timestepper()
    load_t = np.array([
        linear_tension(ts, np.array([[0.0]]), 'qp')['val']
        for aux in ts.iter_from(0)
    ],
                      dtype=np.float64).squeeze()
    load_c = np.array([
        linear_compression(ts, np.array([[0.0]]), 'qp')['val']
        for aux in ts.iter_from(0)
    ],
                      dtype=np.float64).squeeze()

    # Join the branches.
    displacements = np.r_[u_c[::-1], u_t]
    load = np.r_[load_c[::-1], load_t]

    if return_load:
        return displacements, load
    else:
        return displacements
Beispiel #2
0
    def create_app(filename, is_homog=False, **kwargs):
        from sfepy.base.conf import ProblemConf, get_standard_keywords
        from sfepy.homogenization.homogen_app import HomogenizationApp
        from sfepy.applications import PDESolverApp

        required, other = get_standard_keywords()
        if is_homog:
            required.remove('equations')

        conf = ProblemConf.from_file(filename,
                                     required,
                                     other,
                                     define_args=kwargs)
        options = Struct(
            output_filename_trunk=None,
            save_ebc=False,
            save_ebc_nodes=False,
            save_regions=False,
            save_regions_as_groups=False,
            save_field_meshes=False,
            solve_not=False,
        )
        output.set_output(filename='sfepy_log.txt', quiet=True)

        if is_homog:
            app = HomogenizationApp(conf, options, 'material_opt_micro:')

        else:
            app = PDESolverApp(conf, options, 'material_opt_macro:')

        app.conf.opt_data = {}
        opts = conf.options
        if hasattr(opts, 'parametric_hook'):  # Parametric study.
            parametric_hook = conf.get_function(opts.parametric_hook)
            app.parametrize(parametric_hook)

        return app
Beispiel #3
0
def main():
    # Aluminium and epoxy.
    default_pars = '70e9,0.35,2.799e3, 3.8e9,0.27,1.142e3'
    default_solver_conf = ("kind='eig.scipy',method='eigh',tol=1.0e-5,"
                           "maxiter=1000,which='LM',sigma=0.0")

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--pars',
                        metavar='young1,poisson1,density1'
                        ',young2,poisson2,density2',
                        action='store',
                        dest='pars',
                        default=default_pars,
                        help=helps['pars'])
    parser.add_argument('--conf',
                        metavar='filename',
                        action='store',
                        dest='conf',
                        default=None,
                        help=helps['conf'])
    parser.add_argument('--mesh-size',
                        type=float,
                        metavar='float',
                        action='store',
                        dest='mesh_size',
                        default=None,
                        help=helps['mesh_size'])
    parser.add_argument('--unit-multipliers',
                        metavar='c_time,c_length,c_mass',
                        action='store',
                        dest='unit_multipliers',
                        default='1.0,1.0,1.0',
                        help=helps['unit_multipliers'])
    parser.add_argument('--plane',
                        action='store',
                        dest='plane',
                        choices=['strain', 'stress'],
                        default='strain',
                        help=helps['plane'])
    parser.add_argument('--wave-dir',
                        metavar='float,float[,float]',
                        action='store',
                        dest='wave_dir',
                        default='1.0,0.0,0.0',
                        help=helps['wave_dir'])
    parser.add_argument('--mode',
                        action='store',
                        dest='mode',
                        choices=['omega', 'kappa'],
                        default='omega',
                        help=helps['mode'])
    parser.add_argument('--range',
                        metavar='start,stop,count',
                        action='store',
                        dest='range',
                        default='10,100,10',
                        help=helps['range'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('--refine',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='refine',
                        default=0,
                        help=helps['refine'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('--eigs-only',
                        action='store_true',
                        dest='eigs_only',
                        default=False,
                        help=helps['eigs_only'])
    parser.add_argument('--solver-conf',
                        metavar='dict-like',
                        action='store',
                        dest='solver_conf',
                        default=default_solver_conf,
                        help=helps['solver_conf'])
    parser.add_argument('--save-materials',
                        action='store_true',
                        dest='save_materials',
                        default=False,
                        help=helps['save_materials'])
    parser.add_argument('--log-std-waves',
                        action='store_true',
                        dest='log_std_waves',
                        default=False,
                        help=helps['log_std_waves'])
    parser.add_argument('--silent',
                        action='store_true',
                        dest='silent',
                        default=False,
                        help=helps['silent'])
    parser.add_argument('-c',
                        '--clear',
                        action='store_true',
                        dest='clear',
                        default=False,
                        help=helps['clear'])
    parser.add_argument('-o',
                        '--output-dir',
                        metavar='path',
                        action='store',
                        dest='output_dir',
                        default='output',
                        help=helps['output_dir'])
    parser.add_argument('mesh_filename',
                        default='',
                        help=helps['mesh_filename'])
    options = parser.parse_args()

    output_dir = options.output_dir

    output.set_output(filename=os.path.join(output_dir, 'output_log.txt'),
                      combined=options.silent == False)

    if options.conf is not None:
        mod = import_file(options.conf)
        apply_units = mod.apply_units
        define = mod.define
        set_wave_dir = mod.set_wave_dir

    else:
        apply_units = apply_units_le
        define = define_le
        set_wave_dir = set_wave_dir_le

    options.pars = [float(ii) for ii in options.pars.split(',')]
    options.unit_multipliers = [
        float(ii) for ii in options.unit_multipliers.split(',')
    ]
    options.wave_dir = [float(ii) for ii in options.wave_dir.split(',')]
    aux = options.range.split(',')
    options.range = [float(aux[0]), float(aux[1]), int(aux[2])]
    options.solver_conf = dict_from_string(options.solver_conf)

    if options.clear:
        remove_files_patterns(output_dir, ['*.h5', '*.vtk', '*.txt'],
                              ignores=['output_log.txt'],
                              verbose=True)

    filename = os.path.join(output_dir, 'options.txt')
    ensure_path(filename)
    save_options(filename, [('options', vars(options))])

    pars = apply_units(options.pars, options.unit_multipliers)
    output('material parameters with applied unit multipliers:')
    output(pars)

    if options.mode == 'omega':
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['wave_number', 'wave_number'],
                                         options.unit_multipliers)
        output('wave number range with applied unit multipliers:', rng)

    else:
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['frequency', 'frequency'],
                                         options.unit_multipliers)
        output('frequency range with applied unit multipliers:', rng)

    define_problem = functools.partial(define,
                                       filename_mesh=options.mesh_filename,
                                       pars=pars,
                                       approx_order=options.order,
                                       refinement_level=options.refine,
                                       solver_conf=options.solver_conf,
                                       plane=options.plane)

    conf = ProblemConf.from_dict(define_problem(), sys.modules[__name__])

    pb = Problem.from_conf(conf)
    dim = pb.domain.shape.dim

    if dim != 2:
        options.plane = 'strain'

    wdir = nm.asarray(options.wave_dir[:dim], dtype=nm.float64)
    wdir = wdir / nm.linalg.norm(wdir)

    stepper = TimeStepper(rng[0], rng[1], dt=None, n_step=rng[2])

    bbox = pb.domain.mesh.get_bounding_box()
    size = (bbox[1] - bbox[0]).max()
    scaling0 = apply_unit_multipliers([1.0], ['length'],
                                      options.unit_multipliers)[0]
    scaling = scaling0
    if options.mesh_size is not None:
        scaling *= options.mesh_size / size
    output('scaling factor of periodic cell mesh coordinates:', scaling)
    output('new mesh size with applied unit multipliers:', scaling * size)
    pb.domain.mesh.coors[:] *= scaling
    pb.set_mesh_coors(pb.domain.mesh.coors, update_fields=True)

    bzone = 2.0 * nm.pi / (scaling * size)
    output('1. Brillouin zone size:', bzone * scaling0)
    output('1. Brillouin zone size with applied unit multipliers:', bzone)

    pb.time_update()
    pb.update_materials()

    if options.save_materials or options.log_std_waves:
        stiffness = pb.evaluate('ev_integrate_mat.2.Omega(m.D, u)',
                                mode='el_avg',
                                copy_materials=False,
                                verbose=False)
        young, poisson = mc.youngpoisson_from_stiffness(stiffness,
                                                        plane=options.plane)
        density = pb.evaluate('ev_integrate_mat.2.Omega(m.density, u)',
                              mode='el_avg',
                              copy_materials=False,
                              verbose=False)

    if options.save_materials:
        out = {}
        out['young'] = Struct(name='young',
                              mode='cell',
                              data=young[..., None, None])
        out['poisson'] = Struct(name='poisson',
                                mode='cell',
                                data=poisson[..., None, None])
        out['density'] = Struct(name='density', mode='cell', data=density)
        materials_filename = os.path.join(output_dir, 'materials.vtk')
        pb.save_state(materials_filename, out=out)

    # Set the normalized wave vector direction to the material(s).
    set_wave_dir(pb.get_materials(), wdir)

    conf = pb.solver_confs['eig']
    eig_solver = Solver.any_from_conf(conf)

    # Assemble the matrices.
    mtx_m = pb.mtx_a.copy()
    eq_m = pb.equations['M']
    mtx_m = eq_m.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)
    mtx_m.eliminate_zeros()

    mtx_k = pb.mtx_a.copy()
    eq_k = pb.equations['K']
    mtx_k = eq_k.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_k)
    mtx_k.eliminate_zeros()

    mtx_s = pb.mtx_a.copy()
    eq_s = pb.equations['S']
    mtx_s = eq_s.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_s)
    mtx_s.eliminate_zeros()

    mtx_r = pb.mtx_a.copy()
    eq_r = pb.equations['R']
    mtx_r = eq_r.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_r)
    mtx_r.eliminate_zeros()

    output('symmetry checks of real blocks:')
    output('M - M^T:', _max_diff_csr(mtx_m, mtx_m.T))
    output('K - K^T:', _max_diff_csr(mtx_k, mtx_k.T))
    output('S - S^T:', _max_diff_csr(mtx_s, mtx_s.T))
    output('R + R^T:', _max_diff_csr(mtx_r, -mtx_r.T))

    n_eigs = options.n_eigs
    if options.n_eigs > mtx_k.shape[0]:
        options.n_eigs = mtx_k.shape[0]
        n_eigs = None

    if options.mode == 'omega':
        eigenshapes_filename = os.path.join(
            output_dir, 'frequency-eigenshapes-%s.vtk' % stepper.suffix)

        extra = []
        extra_plot_kwargs = []
        if options.log_std_waves:
            lam, mu = mc.lame_from_youngpoisson(young,
                                                poisson,
                                                plane=options.plane)
            alam = nm.average(lam)
            amu = nm.average(mu)
            adensity = nm.average(density)

            cp = nm.sqrt((alam + 2.0 * amu) / adensity)
            cs = nm.sqrt(amu / adensity)
            output('average p-wave speed:', cp)
            output('average shear wave speed:', cs)

            extra = [r'$\omega_p$', r'$\omega_s$']
            extra_plot_kwargs = [{
                'ls': '--',
                'color': 'k'
            }, {
                'ls': '--',
                'color': 'gray'
            }]

        log = Log(
            [[r'$\lambda_{%d}$' % ii for ii in range(options.n_eigs)],
             [r'$\omega_{%d}$' % ii for ii in range(options.n_eigs)] + extra],
            plot_kwargs=[{}, [{}] * options.n_eigs + extra_plot_kwargs],
            yscales=['linear', 'linear'],
            xlabels=[r'$\kappa$', r'$\kappa$'],
            ylabels=[r'eigenvalues $\lambda_i$', r'frequencies $\omega_i$'],
            log_filename=os.path.join(output_dir, 'frequencies.txt'),
            aggregate=1000,
            sleep=0.1)

        for iv, wmag in stepper:
            output('step %d: wave vector %s' % (iv, wmag * wdir))

            mtx_a = mtx_k + wmag**2 * mtx_s + (1j * wmag) * mtx_r
            mtx_b = mtx_m

            output('A - A^H:', _max_diff_csr(mtx_a, mtx_a.H))

            if options.eigs_only:
                eigs = eig_solver(mtx_a,
                                  mtx_b,
                                  n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(mtx_a,
                                         mtx_b,
                                         n_eigs=options.n_eigs,
                                         eigenvectors=True)
            omegas = nm.sqrt(eigs)

            output('eigs, omegas:\n', nm.c_[eigs, omegas])

            out = tuple(eigs) + tuple(omegas)
            if options.log_std_waves:
                out = out + (cp * wmag, cs * wmag)
            log(*out, x=[wmag, wmag])

            save_eigenvectors(eigenshapes_filename % iv, svecs, pb)

        log(save_figure=os.path.join(output_dir, 'frequencies.png'))
        log(finished=True)

    else:
        import scipy.sparse as sps
        from sksparse.cholmod import cholesky

        eigenshapes_filename = os.path.join(
            output_dir, 'wave-number-eigenshapes-%s.vtk' % stepper.suffix)

        factor = cholesky(mtx_s)
        perm = factor.P()
        ir = nm.arange(len(perm))
        mtx_p = sps.coo_matrix((nm.ones_like(perm), (ir, perm)))
        mtx_l = mtx_p.T * factor.L()
        mtx_eye = sps.eye(mtx_l.shape[0], dtype=nm.float64)

        output('S - LL^T:', _max_diff_csr(mtx_s, mtx_l * mtx_l.T))

        log = Log([[r'$\kappa_{%d}$' % ii for ii in range(options.n_eigs)]],
                  plot_kwargs=[{
                      'ls': 'None',
                      'marker': 'o'
                  }],
                  yscales=['linear'],
                  xlabels=[r'$\omega$'],
                  ylabels=[r'wave numbers $\kappa_i$'],
                  log_filename=os.path.join(output_dir, 'wave-numbers.txt'),
                  aggregate=1000,
                  sleep=0.1)
        for io, omega in stepper:
            output('step %d: frequency %s' % (io, omega))

            mtx_a = sps.bmat([[mtx_k - omega**2 * mtx_m, None],
                              [None, mtx_eye]])
            mtx_b = sps.bmat([[1j * mtx_r, mtx_l], [mtx_l.T, None]])

            output('A - A^T:', _max_diff_csr(mtx_a, mtx_a.T))
            output('A - A^H:', _max_diff_csr(mtx_a, mtx_a.T))
            output('B - B^H:', _max_diff_csr(mtx_b, mtx_b.H))

            if options.eigs_only:
                eigs = eig_solver(mtx_a,
                                  mtx_b,
                                  n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(mtx_a,
                                         mtx_b,
                                         n_eigs=options.n_eigs,
                                         eigenvectors=True)
            kappas = eigs

            output('kappas:\n', kappas[:, None])

            out = tuple(kappas)
            log(*out, x=[omega])

            save_eigenvectors(eigenshapes_filename % io, svecs, pb)

        log(save_figure=os.path.join(output_dir, 'wave-numbers.png'))
        log(finished=True)
Beispiel #4
0
def recover_micro_hook_eps(micro_filename, region,
                           eval_var, nodal_values, const_values, eps0,
                           recovery_file_tag='',
                           define_args=None, verbose=False):
    # Create a micro-problem instance.
    required, other = get_standard_keywords()
    required.remove('equations')
    conf = ProblemConf.from_file(micro_filename, required, other,
                                 verbose=False, define_args=define_args)

    coefs_filename = conf.options.get('coefs_filename', 'coefs')
    output_dir = conf.options.get('output_dir', '.')
    coefs_filename = op.join(output_dir, coefs_filename) + '.h5'

    # Coefficients and correctors
    coefs = Coefficients.from_file_hdf5(coefs_filename)
    corrs = get_correctors_from_file(dump_names=coefs.dump_names)

    recovery_hook = conf.options.get('recovery_hook', None)

    if recovery_hook is not None:
        recovery_hook = conf.get_function(recovery_hook)
        pb = Problem.from_conf(conf, init_equations=False, init_solvers=False)

        # Get tiling of a given region
        rcoors = region.domain.mesh.coors[region.get_entities(0), :]
        rcmin = nm.min(rcoors, axis=0)
        rcmax = nm.max(rcoors, axis=0)
        nn = nm.round((rcmax - rcmin) / eps0)
        if nm.prod(nn) == 0:
            output('inconsistency in recovery region and microstructure size!')
            return

        cs = []
        for ii, n in enumerate(nn):
            cs.append(nm.arange(n) * eps0 + rcmin[ii])

        x0 = nm.empty((int(nm.prod(nn)), nn.shape[0]), dtype=nm.float64)
        for ii, icoor in enumerate(nm.meshgrid(*cs, indexing='ij')):
            x0[:, ii] = icoor.flatten()

        mesh = pb.domain.mesh
        coors, conn, outs, ndoffset = [], [], [], 0
        # Recover region
        mic_coors = (mesh.coors - mesh.get_bounding_box()[0, :]) * eps0
        evfield = eval_var.field

        output('recovering microsctructures...')
        tt = time.clock()
        output_fun = output.output_function
        output_level = output.level

        for ii, c0 in enumerate(x0):
            local_macro = {'eps0': eps0}
            local_coors = mic_coors + c0
            # Inside recovery region?
            v = nm.ones((evfield.region.entities[0].shape[0], 1))
            v[evfield.vertex_remap[region.entities[0]]] = 0
            no = nm.sum(v)
            aux = evfield.evaluate_at(local_coors, v)
            if (nm.sum(aux) / no) > 1e-3:
                continue

            output.level = output_level
            output('micro: %d' % ii)

            for k, v in six.iteritems(nodal_values):
                local_macro[k] = evfield.evaluate_at(local_coors, v)
            for k, v in six.iteritems(const_values):
                local_macro[k] = v

            output.set_output(quiet=not(verbose))
            outs.append(recovery_hook(pb, corrs, local_macro))
            output.output_function = output_fun
            coors.append(local_coors)
            conn.append(mesh.get_conn(mesh.descs[0]) + ndoffset)
            ndoffset += mesh.n_nod

    output('...done in %.2f s' % (time.clock() - tt))

    # Collect output variables
    outvars = {}
    for k, v in six.iteritems(outs[0]):
        if v.var_name in outvars:
            outvars[v.var_name].append(k)
        else:
            outvars[v.var_name] = [k]

    # Split output by variables/regions
    pvs = pb.create_variables(outvars.keys())
    outregs = {k: pvs[k].field.region.get_entities(-1) for k in outvars.keys()}
    nrve = len(coors)
    coors = nm.vstack(coors)
    ngroups = nm.tile(mesh.cmesh.vertex_groups.squeeze(), (nrve,))
    conn = nm.vstack(conn)
    cgroups = nm.tile(mesh.cmesh.cell_groups.squeeze(), (nrve,))

    # Get region mesh and data
    for k, cidxs in six.iteritems(outregs):
        gcidxs = nm.hstack([cidxs + mesh.n_el * ii for ii in range(nrve)])
        rconn = conn[gcidxs]
        remap = -nm.ones((coors.shape[0],), dtype=nm.int32)
        remap[rconn] = 1
        vidxs = nm.where(remap > 0)[0]
        remap[vidxs] = nm.arange(len(vidxs))
        rconn = remap[rconn]
        rcoors = coors[vidxs, :]

        out = {}
        for ifield in outvars[k]:
            data = [outs[ii][ifield].data for ii in range(nrve)]
            out[ifield] = Struct(name='output_data',
                                 mode=outs[0][ifield].mode,
                                 dofs=None,
                                 var_name=k,
                                 data=nm.vstack(data))

        micro_name = pb.get_output_name(extra='recovered%s_%s'
                                        % (recovery_file_tag, k))
        filename = op.join(output_dir, op.basename(micro_name))
        mesh_out = Mesh.from_data('recovery_%s' % k, rcoors, ngroups[vidxs],
                                  [rconn], [cgroups[gcidxs]], [mesh.descs[0]])
        mesh_out.write(filename, io='auto', out=out)
def main():
    parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument("output_dir", help=helps["output_dir"])
    parser.add_argument(
        "--dims", metavar="dims", action="store", dest="dims", default="1.0,1.0,1.0", help=helps["dims"]
    )
    parser.add_argument(
        "--shape", metavar="shape", action="store", dest="shape", default="11,11,11", help=helps["shape"]
    )
    parser.add_argument(
        "--centre", metavar="centre", action="store", dest="centre", default="0.0,0.0,0.0", help=helps["centre"]
    )
    parser.add_argument("-2", "--2d", action="store_true", dest="is_2d", default=False, help=helps["2d"])
    parser.add_argument(
        "--u-order", metavar="int", type=int, action="store", dest="order_u", default=1, help=helps["u-order"]
    )
    parser.add_argument(
        "--p-order", metavar="int", type=int, action="store", dest="order_p", default=1, help=helps["p-order"]
    )
    parser.add_argument(
        "--linearization",
        choices=["strip", "adaptive"],
        action="store",
        dest="linearization",
        default="strip",
        help=helps["linearization"],
    )
    parser.add_argument("--metis", action="store_true", dest="metis", default=False, help=helps["metis"])
    parser.add_argument("--silent", action="store_true", dest="silent", default=False, help=helps["silent"])
    parser.add_argument("--clear", action="store_true", dest="clear", default=False, help=helps["clear"])
    options, petsc_opts = parser.parse_known_args()

    comm = pl.PETSc.COMM_WORLD

    output_dir = options.output_dir

    filename = os.path.join(output_dir, "output_log_%02d.txt" % comm.rank)
    if comm.rank == 0:
        ensure_path(filename)
    comm.barrier()

    output.prefix = "sfepy_%02d:" % comm.rank
    output.set_output(filename=filename, combined=options.silent == False)

    output("petsc options:", petsc_opts)

    mesh_filename = os.path.join(options.output_dir, "para.h5")

    if comm.rank == 0:
        from sfepy.mesh.mesh_generators import gen_block_mesh

        if options.clear:
            for _f in chain(
                *[glob.glob(os.path.join(output_dir, clean_pattern)) for clean_pattern in ["*.h5", "*.txt", "*.png"]]
            ):
                output('removing "%s"' % _f)
                os.remove(_f)

        dim = 2 if options.is_2d else 3
        dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

        output("dimensions:", dims)
        output("shape:     ", shape)
        output("centre:    ", centre)

        mesh = gen_block_mesh(dims, shape, centre, name="block-fem", verbose=True)
        mesh.write(mesh_filename, io="auto")

    comm.barrier()

    output("field u order:", options.order_u)
    output("field p order:", options.order_p)

    solve_problem(mesh_filename, options, comm)
Beispiel #6
0
def main():
    # if multi_mpi.cpu_count() < 2:
    #     raise ValueError('MPI mode - the number of nodes is less then 2!')

    if multi_mpi.mpi_rank == multi_mpi.mpi_master:
        # MPI master node - solve problem at macro scale
        parser = ArgumentParser(description=__doc__,
                                formatter_class=RawDescriptionHelpFormatter)
        parser.add_argument('--debug',
                            action='store_true', dest='debug',
                            default=False, help=helps['debug'])
        parser.add_argument('--debug_mpi',
                            action='store_true', dest='debug_mpi',
                            default=False, help=helps['debug_mpi'])
        parser.add_argument('-c', '--conf', metavar='"key : value, ..."',
                            action='store', dest='conf', type=str,
                            default=None, help=helps['conf'])
        parser.add_argument('-O', '--options', metavar='"key : value, ..."',
                            action='store', dest='app_options', type=str,
                            default=None, help=helps['options'])
        parser.add_argument('-d', '--define', metavar='"key : value, ..."',
                            action='store', dest='define_args', type=str,
                            default=None, help=helps['define'])
        parser.add_argument('-o', metavar='filename',
                            action='store', dest='output_filename_trunk',
                            default=None, help=helps['filename'])
        parser.add_argument('--format', metavar='format',
                            action='store', dest='output_format',
                            default=None, help=helps['output_format'])
        parser.add_argument('--log', metavar='file',
                            action='store', dest='log',
                            default=None, help=helps['log'])
        parser.add_argument('-q', '--quiet',
                            action='store_true', dest='quiet',
                            default=False, help=helps['quiet'])
        group = parser.add_mutually_exclusive_group(required=True)
        group.add_argument('filename_in', nargs='?')
        options = parser.parse_args()

        for k in ['save_ebc', 'save_ebc_nodes', 'save_regions',
                  'save_regions_as_groups', 'save_field_meshes', 'solve_not']:
            setattr(options, k, False)

        if options.debug:
            from sfepy.base.base import debug_on_error; debug_on_error()

        if options.debug_mpi:
            multi_mpi.set_logging_level('debug')

        filename_in = options.filename_in
        output.set_output(filename=options.log,
                          quiet=options.quiet,
                          combined=options.log is not None)

        required, other = get_standard_keywords()
        conf = ProblemConf.from_file_and_options(filename_in, options,
            required, other, define_args=options.define_args)

        opts = conf.options
        nslaves = multi_mpi.cpu_count() - 1
        opts.n_mpi_homog_slaves = nslaves
        output_prefix = opts.get('output_prefix', 'sfepy:')

        app = PDESolverApp(conf, options, output_prefix)
        if hasattr(opts, 'parametric_hook'):  # Parametric study.
            parametric_hook = conf.get_function(opts.parametric_hook)
            app.parametrize(parametric_hook)
        app()

        multi_mpi.master_send_task('finalize', None)
    else:
        # MPI slave mode - calculate homogenized coefficients
        homogen_app = None
        done = False
        rank = multi_mpi.mpi_rank
        while not done:
            task, data = multi_mpi.slave_get_task('main slave loop')

            if task == 'init':  # data: micro_file, n_micro
                output.set_output(filename='homog_app_mpi_%d.log' % rank,
                                  quiet=True)
                micro_file, n_micro = data[:2]
                required, other = get_standard_keywords()
                required.remove('equations')
                conf = ProblemConf.from_file(micro_file, required, other,
                                             verbose=False)
                options = Struct(output_filename_trunk=None)
                homogen_app = HomogenizationApp(conf, options, 'micro:',
                                                n_micro=n_micro,
                                                update_micro_coors=True)
            elif task == 'calculate':  # data: rel_def_grad, ts, iteration
                rel_def_grad, ts, iteration = data[:3]
                homogen_app.setup_macro_deformation(rel_def_grad)
                homogen_app(ret_all=True, itime=ts.step, iiter=iteration)
            elif task == 'finalize':
                done = True
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('-d', '--dims', metavar='l,w,t',
                        action='store', dest='dims',
                        default='0.2,0.01,0.001', help=helps['dims'])
    parser.add_argument('-n', '--nx', metavar='start,stop,step',
                        action='store', dest='nx',
                        default='2,103,10', help=helps['nx'])
    parser.add_argument('-t', '--transform', choices=['none', 'bend', 'twist'],
                        action='store', dest='transform',
                        default='none', help=helps['transform'])
    parser.add_argument('--young', metavar='float', type=float,
                        action='store', dest='young',
                        default=210e9, help=helps['young'])
    parser.add_argument('--poisson', metavar='float', type=float,
                        action='store', dest='poisson',
                        default=0.3, help=helps['poisson'])
    parser.add_argument('--force', metavar='float', type=float,
                        action='store', dest='force',
                        default=-1.0, help=helps['force'])
    parser.add_argument('-p', '--plot',
                        action="store_true", dest='plot',
                        default=False, help=helps['plot'])
    parser.add_argument('--u-scaling', metavar='float', type=float,
                        action='store', dest='scaling',
                        default=1.0, help=helps['scaling'])
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    options = parser.parse_args()

    dims = nm.array([float(ii) for ii in options.dims.split(',')],
                    dtype=nm.float64)
    nxs = tuple([int(ii) for ii in options.nx.split(',')])
    young = options.young
    poisson = options.poisson
    force = options.force

    output_dir = options.output_dir

    odir = lambda filename: os.path.join(output_dir, filename)

    filename = odir('output_log.txt')
    ensure_path(filename)
    output.set_output(filename=filename, combined=options.silent == False)

    output('output directory:', output_dir)
    output('using values:')
    output("  dimensions:", dims)
    output("  nx range:", nxs)
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  force:', options.force)
    output('  transform:', options.transform)

    if options.transform == 'none':
        options.transform = None

    u_exact = get_analytical_displacement(dims, young, force,
                                          transform=options.transform)

    if options.transform is None:
        ilog = 2
        labels = ['u_3']

    elif options.transform == 'bend':
        ilog = 0
        labels = ['u_1']

    elif options.transform == 'twist':
        ilog = [0, 1, 2]
        labels = ['u_1', 'u_2', 'u_3']

    label = ', '.join(labels)

    log = []
    for nx in range(*nxs):
        shape = (nx, 2)

        pb, state, u, gamma2 = solve_problem(shape, dims, young, poisson, force,
                                             transform=options.transform)

        dofs = u.get_state_in_region(gamma2)
        output('DOFs along the loaded edge:')
        output('\n%s' % dofs)

        log.append([nx - 1] + nm.array(dofs[0, ilog], ndmin=1).tolist())

    pb.save_state(odir('shell10x_cantilever.vtk'), state)

    log = nm.array(log)

    output('max. %s displacement w.r.t. number of cells:' % label)
    output('\n%s' % log)
    output('analytical value:', u_exact)

    if options.plot:
        import matplotlib.pyplot as plt

        plt.rcParams.update({
            'lines.linewidth' : 3,
            'font.size' : 16,
        })

        fig, ax1 = plt.subplots()
        fig.suptitle('max. $%s$ displacement' % label)

        for ic in range(log.shape[1] - 1):
            ax1.plot(log[:, 0], log[:, ic + 1], label=r'$%s$' % labels[ic])
        ax1.set_xlabel('# of cells')
        ax1.set_ylabel(r'$%s$' % label)
        ax1.grid(which='both')

        lines1, labels1 = ax1.get_legend_handles_labels()

        if u_exact is not None:
            ax1.hlines(u_exact, log[0, 0], log[-1, 0],
                       'r', 'dotted', label=r'$%s^{analytical}$' % label)

            ax2 = ax1.twinx()
            # Assume single log column.
            ax2.semilogy(log[:, 0], nm.abs(log[:, 1] - u_exact), 'g',
                         label=r'$|%s - %s^{analytical}|$' % (label, label))
            ax2.set_ylabel(r'$|%s - %s^{analytical}|$' % (label, label))

            lines2, labels2 = ax2.get_legend_handles_labels()

        else:
            lines2, labels2 = [], []

        ax1.legend(lines1 + lines2, labels1 + labels2, loc='best')

        plt.tight_layout()
        ax1.set_xlim([log[0, 0] - 2, log[-1, 0] + 2])

        suffix = {None: 'straight',
                  'bend' : 'bent', 'twist' : 'twisted'}[options.transform]
        fig.savefig(odir('shell10x_cantilever_convergence_%s.png' % suffix))

        plt.show()

    if options.show:
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        ds = {'u_disp' :
                  DomainSpecificPlot('plot_displacements',
                                     ['rel_scaling=%f' % options.scaling])}
        view = Viewer(odir('shell10x_cantilever.vtk'))
        view(domain_specific=ds, is_scalar_bar=True, is_wireframe=True,
             opacity={'wireframe' : 0.5})
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('-d', '--dims', metavar='l,w,t',
                        action='store', dest='dims',
                        default='0.2,0.01,0.001', help=helps['dims'])
    parser.add_argument('-n', '--nx', metavar='start,stop,step',
                        action='store', dest='nx',
                        default='2,103,10', help=helps['nx'])
    parser.add_argument('-t', '--transform', choices=['none', 'bend', 'twist'],
                        action='store', dest='transform',
                        default='none', help=helps['transform'])
    parser.add_argument('--young', metavar='float', type=float,
                        action='store', dest='young',
                        default=210e9, help=helps['young'])
    parser.add_argument('--poisson', metavar='float', type=float,
                        action='store', dest='poisson',
                        default=0.3, help=helps['poisson'])
    parser.add_argument('--force', metavar='float', type=float,
                        action='store', dest='force',
                        default=-1.0, help=helps['force'])
    parser.add_argument('-p', '--plot',
                        action="store_true", dest='plot',
                        default=False, help=helps['plot'])
    parser.add_argument('--u-scaling', metavar='float', type=float,
                        action='store', dest='scaling',
                        default=1.0, help=helps['scaling'])
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    options = parser.parse_args()

    dims = nm.array([float(ii) for ii in options.dims.split(',')],
                    dtype=nm.float64)
    nxs = tuple([int(ii) for ii in options.nx.split(',')])
    young = options.young
    poisson = options.poisson
    force = options.force

    output_dir = options.output_dir

    odir = lambda filename: os.path.join(output_dir, filename)

    filename = odir('output_log.txt')
    ensure_path(filename)
    output.set_output(filename=filename, combined=options.silent == False)

    output('output directory:', output_dir)
    output('using values:')
    output("  dimensions:", dims)
    output("  nx range:", nxs)
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  force:', options.force)
    output('  transform:', options.transform)

    if options.transform == 'none':
        options.transform = None

    u_exact = get_analytical_displacement(dims, young, force,
                                          transform=options.transform)

    if options.transform is None:
        ilog = 2
        labels = ['u_3']

    elif options.transform == 'bend':
        ilog = 0
        labels = ['u_1']

    elif options.transform == 'twist':
        ilog = [0, 1, 2]
        labels = ['u_1', 'u_2', 'u_3']

    label = ', '.join(labels)

    log = []
    for nx in range(*nxs):
        shape = (nx, 2)

        pb, state, u, gamma2 = solve_problem(shape, dims, young, poisson, force,
                                             transform=options.transform)

        dofs = u.get_state_in_region(gamma2)
        output('DOFs along the loaded edge:')
        output('\n%s' % dofs)

        log.append([nx - 1] + nm.array(dofs[0, ilog], ndmin=1).tolist())

    pb.save_state(odir('shell10x_cantilever.vtk'), state)

    log = nm.array(log)

    output('max. %s displacement w.r.t. number of cells:' % label)
    output('\n%s' % log)
    output('analytical value:', u_exact)

    if options.plot:
        import matplotlib.pyplot as plt

        plt.rcParams.update({
            'lines.linewidth' : 3,
            'font.size' : 16,
        })

        fig, ax1 = plt.subplots()
        fig.suptitle('max. $%s$ displacement' % label)

        for ic in range(log.shape[1] - 1):
            ax1.plot(log[:, 0], log[:, ic + 1], label=r'$%s$' % labels[ic])
        ax1.set_xlabel('# of cells')
        ax1.set_ylabel(r'$%s$' % label)
        ax1.grid(which='both')

        lines1, labels1 = ax1.get_legend_handles_labels()

        if u_exact is not None:
            ax1.hlines(u_exact, log[0, 0], log[-1, 0],
                       'r', 'dotted', label=r'$%s^{analytical}$' % label)

            ax2 = ax1.twinx()
            # Assume single log column.
            ax2.semilogy(log[:, 0], nm.abs(log[:, 1] - u_exact), 'g',
                         label=r'$|%s - %s^{analytical}|$' % (label, label))
            ax2.set_ylabel(r'$|%s - %s^{analytical}|$' % (label, label))

            lines2, labels2 = ax2.get_legend_handles_labels()

        else:
            lines2, labels2 = [], []

        ax1.legend(lines1 + lines2, labels1 + labels2, loc='best')

        plt.tight_layout()
        ax1.set_xlim([log[0, 0] - 2, log[-1, 0] + 2])

        suffix = {None: 'straight',
                  'bend' : 'bent', 'twist' : 'twisted'}[options.transform]
        fig.savefig(odir('shell10x_cantilever_convergence_%s.png' % suffix))

        plt.show()

    if options.show:
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        ds = {'u_disp' :
                  DomainSpecificPlot('plot_displacements',
                                     ['rel_scaling=%f' % options.scaling])}
        view = Viewer(odir('shell10x_cantilever.vtk'))
        view(domain_specific=ds, is_scalar_bar=True, is_wireframe=True,
             opacity={'wireframe' : 0.5})
Beispiel #9
0
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims', metavar='dims',
                        action='store', dest='dims',
                        default='1.0,1.0,1.0', help=helps['dims'])
    parser.add_argument('--shape', metavar='shape',
                        action='store', dest='shape',
                        default='11,11,11', help=helps['shape'])
    parser.add_argument('--centre', metavar='centre',
                        action='store', dest='centre',
                        default='0.0,0.0,0.0', help=helps['centre'])
    parser.add_argument('-2', '--2d',
                        action='store_true', dest='is_2d',
                        default=False, help=helps['2d'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('--linearization', choices=['strip', 'adaptive'],
                        action='store', dest='linearization',
                        default='strip', help=helps['linearization'])
    parser.add_argument('--metis',
                        action='store_true', dest='metis',
                        default=False, help=helps['metis'])
    parser.add_argument('--verify',
                        action='store_true', dest='verify',
                        default=False, help=helps['verify'])
    parser.add_argument('--plot',
                        action='store_true', dest='plot',
                        default=False, help=helps['plot'])
    parser.add_argument('--show',
                        action='store_true', dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('--save-inter-regions',
                        action='store_true', dest='save_inter_regions',
                        default=False, help=helps['save_inter_regions'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    parser.add_argument('--clear',
                        action='store_true', dest='clear',
                        default=False, help=helps['clear'])
    options, petsc_opts = parser.parse_known_args()

    if options.show:
        options.plot = True

    comm = pl.PETSc.COMM_WORLD

    output_dir = options.output_dir

    filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank)
    if comm.rank == 0:
        ensure_path(filename)
    comm.barrier()

    output.prefix = 'sfepy_%02d:' % comm.rank
    output.set_output(filename=filename, combined=options.silent == False)

    output('petsc options:', petsc_opts)

    mesh_filename = os.path.join(options.output_dir, 'para.h5')

    if comm.rank == 0:
        from sfepy.mesh.mesh_generators import gen_block_mesh

        if options.clear:
            remove_files_patterns(output_dir,
                                  ['*.h5', '*.mesh', '*.txt', '*.png'],
                                  ignores=['output_log_%02d.txt' % ii
                                           for ii in range(comm.size)],
                                  verbose=True)

        save_options(os.path.join(output_dir, 'options.txt'),
                     [('options', vars(options))])

        dim = 2 if options.is_2d else 3
        dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

        output('dimensions:', dims)
        output('shape:     ', shape)
        output('centre:    ', centre)

        mesh = gen_block_mesh(dims, shape, centre, name='block-fem',
                              verbose=True)
        mesh.write(mesh_filename, io='auto')

    comm.barrier()

    output('field order:', options.order)

    solve_problem(mesh_filename, options, comm)
Beispiel #10
0
def main():
    # Aluminium and epoxy.
    default_pars = '70e9,0.35,2.799e3, 3.8e9,0.27,1.142e3'
    default_solver_conf = ("kind='eig.scipy',method='eigsh',tol=1.0e-5,"
                           "maxiter=1000,which='LM',sigma=0.0")

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--pars', metavar='young1,poisson1,density1'
                        ',young2,poisson2,density2',
                        action='store', dest='pars',
                        default=default_pars, help=helps['pars'])
    parser.add_argument('--conf', metavar='filename',
                        action='store', dest='conf',
                        default=None, help=helps['conf'])
    parser.add_argument('--mesh-size', type=float, metavar='float',
                        action='store', dest='mesh_size',
                        default=None, help=helps['mesh_size'])
    parser.add_argument('--unit-multipliers',
                        metavar='c_time,c_length,c_mass',
                        action='store', dest='unit_multipliers',
                        default='1.0,1.0,1.0', help=helps['unit_multipliers'])
    parser.add_argument('--plane', action='store', dest='plane',
                        choices=['strain', 'stress'],
                        default='strain', help=helps['plane'])
    parser.add_argument('--wave-dir', metavar='float,float[,float]',
                        action='store', dest='wave_dir',
                        default='1.0,0.0,0.0', help=helps['wave_dir'])
    parser.add_argument('--mode', action='store', dest='mode',
                        choices=['omega', 'kappa'],
                        default='omega', help=helps['mode'])
    parser.add_argument('--range', metavar='start,stop,count',
                        action='store', dest='range',
                        default='0,6.4,33', help=helps['range'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('--refine', metavar='int', type=int,
                        action='store', dest='refine',
                        default=0, help=helps['refine'])
    parser.add_argument('-n', '--n-eigs', metavar='int', type=int,
                        action='store', dest='n_eigs',
                        default=6, help=helps['n_eigs'])
    group = parser.add_mutually_exclusive_group()
    group.add_argument('--eigs-only',
                       action='store_true', dest='eigs_only',
                       default=False, help=helps['eigs_only'])
    group.add_argument('--post-process',
                       action='store_true', dest='post_process',
                       default=False, help=helps['post_process'])
    parser.add_argument('--solver-conf', metavar='dict-like',
                        action='store', dest='solver_conf',
                        default=default_solver_conf, help=helps['solver_conf'])
    parser.add_argument('--save-regions',
                        action='store_true', dest='save_regions',
                        default=False, help=helps['save_regions'])
    parser.add_argument('--save-materials',
                        action='store_true', dest='save_materials',
                        default=False, help=helps['save_materials'])
    parser.add_argument('--log-std-waves',
                        action='store_true', dest='log_std_waves',
                        default=False, help=helps['log_std_waves'])
    parser.add_argument('--no-legends',
                        action='store_false', dest='show_legends',
                        default=True, help=helps['no_legends'])
    parser.add_argument('--no-show',
                        action='store_false', dest='show',
                        default=True, help=helps['no_show'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    parser.add_argument('-c', '--clear',
                        action='store_true', dest='clear',
                        default=False, help=helps['clear'])
    parser.add_argument('-o', '--output-dir', metavar='path',
                        action='store', dest='output_dir',
                        default='output', help=helps['output_dir'])
    parser.add_argument('mesh_filename', default='',
                        help=helps['mesh_filename'])
    options = parser.parse_args()

    output_dir = options.output_dir

    output.set_output(filename=os.path.join(output_dir,'output_log.txt'),
                      combined=options.silent == False)

    if options.conf is not None:
        mod = import_file(options.conf)

    else:
        mod = sys.modules[__name__]

    apply_units = mod.apply_units
    define = mod.define
    set_wave_dir = mod.set_wave_dir
    setup_n_eigs = mod.setup_n_eigs
    build_evp_matrices = mod.build_evp_matrices
    save_materials = mod.save_materials
    get_std_wave_fun = mod.get_std_wave_fun
    get_stepper = mod.get_stepper
    process_evp_results = mod.process_evp_results

    options.pars = [float(ii) for ii in options.pars.split(',')]
    options.unit_multipliers = [float(ii)
                                for ii in options.unit_multipliers.split(',')]
    options.wave_dir = [float(ii)
                        for ii in options.wave_dir.split(',')]
    aux = options.range.split(',')
    options.range = [float(aux[0]), float(aux[1]), int(aux[2])]
    options.solver_conf = dict_from_string(options.solver_conf)

    if options.clear:
        remove_files_patterns(output_dir,
                              ['*.h5', '*.vtk', '*.txt'],
                              ignores=['output_log.txt'],
                              verbose=True)

    filename = os.path.join(output_dir, 'options.txt')
    ensure_path(filename)
    save_options(filename, [('options', vars(options))],
                 quote_command_line=True)

    pars = apply_units(options.pars, options.unit_multipliers)
    output('material parameters with applied unit multipliers:')
    output(pars)

    if options.mode == 'omega':
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['wave_number', 'wave_number'],
                                         options.unit_multipliers)
        output('wave number range with applied unit multipliers:', rng)

    else:
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['frequency', 'frequency'],
                                         options.unit_multipliers)
        output('frequency range with applied unit multipliers:', rng)

    pb, wdir, bzone, mtxs = assemble_matrices(define, mod, pars, set_wave_dir,
                                              options)
    dim = pb.domain.shape.dim

    if dim != 2:
        options.plane = 'strain'

    if options.save_regions:
        pb.save_regions_as_groups(os.path.join(output_dir, 'regions'))

    if options.save_materials:
        save_materials(output_dir, pb, options)

    conf = pb.solver_confs['eig']
    eig_solver = Solver.any_from_conf(conf)

    n_eigs, options.n_eigs = setup_n_eigs(options, pb, mtxs)

    get_color = lambda ii: plt.cm.viridis((float(ii) / (options.n_eigs - 1)))
    plot_kwargs = [{'color' : get_color(ii), 'ls' : '', 'marker' : 'o'}
                  for ii in range(options.n_eigs)]

    log_names = []
    log_plot_kwargs = []
    if options.log_std_waves:
        std_wave_fun, log_names, log_plot_kwargs = get_std_wave_fun(
            pb, options)

    else:
        std_wave_fun = None

    stepper = get_stepper(rng, pb, options)

    if options.mode == 'omega':
        eigenshapes_filename = os.path.join(output_dir,
                                            'frequency-eigenshapes-%s.vtk'
                                            % stepper.suffix)

        log = Log([[r'$\lambda_{%d}$' % ii for ii in range(options.n_eigs)],
                   [r'$\omega_{%d}$'
                    % ii for ii in range(options.n_eigs)] + log_names],
                  plot_kwargs=[plot_kwargs, plot_kwargs + log_plot_kwargs],
                  formats=[['{:.5e}'] * options.n_eigs,
                           ['{:.5e}'] * (options.n_eigs + len(log_names))],
                  yscales=['linear', 'linear'],
                  xlabels=[r'$\kappa$', r'$\kappa$'],
                  ylabels=[r'eigenvalues $\lambda_i$',
                           r'frequencies $\omega_i$'],
                  show_legends=options.show_legends,
                  is_plot=options.show,
                  log_filename=os.path.join(output_dir, 'frequencies.txt'),
                  aggregate=1000, sleep=0.1)

        for iv, wmag in stepper:
            output('step %d: wave vector %s' % (iv, wmag * wdir))

            evp_mtxs = build_evp_matrices(mtxs, wmag, options.mode, pb)

            if options.eigs_only:
                eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                         eigenvectors=True)

            omegas, svecs, out = process_evp_results(
                eigs, svecs, wmag, options.mode,
                wdir, bzone, pb, mtxs, std_wave_fun=std_wave_fun
            )
            log(*out, x=[wmag, wmag])

            save_eigenvectors(eigenshapes_filename % iv, svecs, wmag, wdir, pb)

            gc.collect()

        log(save_figure=os.path.join(output_dir, 'frequencies.png'))
        log(finished=True)

    else:
        eigenshapes_filename = os.path.join(output_dir,
                                            'wave-number-eigenshapes-%s.vtk'
                                            % stepper.suffix)

        log = Log([[r'$\kappa_{%d}$' % ii for ii in range(options.n_eigs)]
                   + log_names],
                  plot_kwargs=[plot_kwargs + log_plot_kwargs],
                  formats=[['{:.5e}'] * (options.n_eigs + len(log_names))],
                  yscales=['linear'],
                  xlabels=[r'$\omega$'],
                  ylabels=[r'wave numbers $\kappa_i$'],
                  show_legends=options.show_legends,
                  is_plot=options.show,
                  log_filename=os.path.join(output_dir, 'wave-numbers.txt'),
                  aggregate=1000, sleep=0.1)
        for io, omega in stepper:
            output('step %d: frequency %s' % (io, omega))

            evp_mtxs = build_evp_matrices(mtxs, omega, options.mode, pb)

            if options.eigs_only:
                eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                         eigenvectors=True)

            kappas, svecs, out = process_evp_results(
                eigs, svecs, omega, options.mode,
                wdir, bzone, pb, mtxs, std_wave_fun=std_wave_fun
            )
            log(*out, x=[omega])

            save_eigenvectors(eigenshapes_filename % io, svecs, kappas, wdir,
                              pb)

            gc.collect()

        log(save_figure=os.path.join(output_dir, 'wave-numbers.png'))
        log(finished=True)
Beispiel #11
0
def main():
    parser = OptionParser(usage=usage, version='%prog ' + sfepy.__version__)
    parser.add_option('-c', '--conf', metavar='"key : value, ..."',
                      action='store', dest='conf', type='string',
                      default=None, help= help['conf'])
    parser.add_option('-O', '--options', metavar='"key : value, ..."',
                      action='store', dest='app_options', type='string',
                      default=None, help=help['options'])
    parser.add_option('-d', '--define', metavar='"key : value, ..."',
                      action='store', dest='define_args', type='string',
                      default=None, help=help['define'])
    parser.add_option('-o', '', metavar='filename',
                      action='store', dest='output_filename_trunk',
                      default=None, help=help['filename'])
    parser.add_option('', '--format', metavar='format',
                      action='store', dest='output_format',
                      default=None, help=help['output_format'])
    parser.add_option('', '--log', metavar='file',
                      action='store', dest='log',
                      default=None, help=help['log'])
    parser.add_option('-q', '--quiet',
                      action='store_true', dest='quiet',
                      default=False, help=help['quiet'])
    parser.add_option('', '--save-ebc',
                      action='store_true', dest='save_ebc',
                      default=False, help=help['save_ebc'])
    parser.add_option('', '--save-ebc-nodes',
                      action='store_true', dest='save_ebc_nodes',
                      default=False, help=help['save_ebc_nodes'])
    parser.add_option('', '--save-regions',
                      action='store_true', dest='save_regions',
                      default=False, help=help['save_regions'])
    parser.add_option('', '--save-regions-as-groups',
                      action='store_true', dest='save_regions_as_groups',
                      default=False, help=help['save_regions_as_groups'])
    parser.add_option('', '--save-field-meshes',
                      action='store_true', dest='save_field_meshes',
                      default=False, help=help['save_field_meshes'])
    parser.add_option('', '--solve-not',
                      action='store_true', dest='solve_not',
                      default=False, help=help['solve_not'])
    parser.add_option('', '--list', metavar='what',
                      action='store', dest='_list',
                      default=None, help=help['list'])

    options, args = parser.parse_args()

    if (len(args) == 1):
        filename_in = args[0];
    else:
        if options._list == 'terms':
            print_terms()
        else:
            parser.print_help(),
        return

    output.set_output(filename=options.log,
                      quiet=options.quiet,
                      combined=options.log is not None)

    required, other = get_standard_keywords()
    if options.solve_not:
        required.remove('equations')
        required.remove('solver_[0-9]+|solvers')
        other.extend(['equations'])

    conf = ProblemConf.from_file_and_options(filename_in, options,
                                             required, other,
                                             define_args=options.define_args)

    opts = conf.options
    output_prefix = get_default_attr(opts, 'output_prefix', 'sfepy:')

    app = PDESolverApp(conf, options, output_prefix)
    if hasattr(opts, 'parametric_hook'): # Parametric study.
        parametric_hook = conf.get_function(opts.parametric_hook)
        app.parametrize(parametric_hook)
    app()
Beispiel #12
0
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version',
                        version='%(prog)s ' + sfepy.__version__)
    parser.add_argument('--debug',
                        action='store_true', dest='debug',
                        default=False, help=helps['debug'])
    parser.add_argument('-c', '--conf', metavar='"key : value, ..."',
                        action='store', dest='conf', type=str,
                        default=None, help= helps['conf'])
    parser.add_argument('-O', '--options', metavar='"key : value, ..."',
                        action='store', dest='app_options', type=str,
                        default=None, help=helps['options'])
    parser.add_argument('-d', '--define', metavar='"key : value, ..."',
                        action='store', dest='define_args', type=str,
                        default=None, help=helps['define'])
    parser.add_argument('-o', metavar='filename',
                        action='store', dest='output_filename_trunk',
                        default=None, help=helps['filename'])
    parser.add_argument('--format', metavar='format',
                        action='store', dest='output_format',
                        default=None, help=helps['output_format'])
    parser.add_argument('--save-restart', metavar='mode', type=int,
                        action='store', dest='save_restart',
                        default=None, help=helps['save_restart'])
    parser.add_argument('--load-restart', metavar='filename',
                        action='store', dest='load_restart',
                        default=None, help=helps['load_restart'])
    parser.add_argument('--log', metavar='file',
                        action='store', dest='log',
                        default=None, help=helps['log'])
    parser.add_argument('-q', '--quiet',
                        action='store_true', dest='quiet',
                        default=False, help=helps['quiet'])
    parser.add_argument('--save-ebc',
                        action='store_true', dest='save_ebc',
                        default=False, help=helps['save_ebc'])
    parser.add_argument('--save-ebc-nodes',
                        action='store_true', dest='save_ebc_nodes',
                        default=False, help=helps['save_ebc_nodes'])
    parser.add_argument('--save-regions',
                        action='store_true', dest='save_regions',
                        default=False, help=helps['save_regions'])
    parser.add_argument('--save-regions-as-groups',
                        action='store_true', dest='save_regions_as_groups',
                        default=False, help=helps['save_regions_as_groups'])
    parser.add_argument('--save-field-meshes',
                        action='store_true', dest='save_field_meshes',
                        default=False, help=helps['save_field_meshes'])
    parser.add_argument('--solve-not',
                        action='store_true', dest='solve_not',
                        default=False, help=helps['solve_not'])
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument('--list', metavar='what',
                        action='store', dest='_list',
                        default=None, help=helps['list'])
    group.add_argument('filename_in', nargs='?')
    options = parser.parse_args()

    if options._list is not None:
        if options._list == 'terms':
            print_terms()

        elif options._list == 'solvers':
            print_solvers()

        return

    if options.debug:
        from sfepy.base.base import debug_on_error; debug_on_error()

    filename_in = options.filename_in
    output.set_output(filename=options.log,
                      quiet=options.quiet,
                      combined=options.log is not None)

    required, other = get_standard_keywords()
    if options.solve_not:
        required.remove('equations')
        required.remove('solver_[0-9]+|solvers')
        other.extend(['equations'])

    conf = ProblemConf.from_file_and_options(filename_in, options,
                                             required, other,
                                             define_args=options.define_args)

    opts = conf.options
    output_prefix = opts.get('output_prefix', 'sfepy:')

    opts.save_restart = options.save_restart
    opts.load_restart = options.load_restart

    app = PDESolverApp(conf, options, output_prefix)
    if hasattr(opts, 'parametric_hook'): # Parametric study.
        parametric_hook = conf.get_function(opts.parametric_hook)
        app.parametrize(parametric_hook)
    app()
Beispiel #13
0
def FarField(eltype,
             points,
             boundary,
             lcar,
             epsilon,
             meshfile,
             thickness=None,
             verbose=False):
    """
    This function determines a geometric factor F within a single element. 
    The element type can be triangular, quadrilateral, tetrahedral or 
    hexahedral. For these types eltype is set to  "CTRIA3", "CQUAD4"
    "CTETRA" and "CHEXA8" respectively. The vertices of the element are 
    provided in the input parameter points. The input parameter boundary is of 
    boolean type and has the same size as points. Those points which are
    part of the conductive interface CI are flagged True. Epsilon sets
    a tolerance to determine which mesh vertices are considered part of
    the FF boundary. The meshing of the element is stored in a location
    provided by meshfile.
    
    Parameters
    ----------
    
    eltype:   string
              'CTRIA3' for triangular surface elements,
              'CQUAD4' for quadrilateral surface elements,
              'CTETRA' for tetrahedral volume elements.
              'CHEXA8' for hexahedral volume elements.
    points:   array like
              Array containing the coordinates of the element
    boundary: array like
              Array containing the entries of the boundary points
    lcar:     float
              Characteristic length value provided to gmsh for mesh sizing.
    epsilon:  float
              Numerical tolerance on criterion for far field
              boundary
    meshfile: string
              Filename and location for storing temporary mesh file
    verbose:  boolean
              Indicate whether intermediate results should be displayed
              or not
         
    Returns
    -------
    : array like
        Array with boolean entries stating True for those items
        on the boundary and False otherwise
    """

    if verbose is True:
        output.set_output(quiet=False)
    else:
        output.set_output(quiet=True)

    if (eltype == "CTRIA3") or (eltype == "CQUAD4"):
        sdim = 2
    else:
        sdim = 3

    boundpnts = []
    for i in range(len(points)):
        if boundary[i]:
            boundpnts.append(points[i])

    mesh = sfedis.fem.Mesh.from_file(meshfile)

    domain = sfedis.fem.FEDomain('domain', mesh)

    c = sfedis.Material('c', val=1.0)

    omega = domain.create_region('Omega', 'all')

    if verbose is True:
        coors = mesh.coors
        fixed_vert = _is_on_bound(coors,
                                  bound=boundpnts,
                                  sdim=sdim,
                                  epsilon=epsilon)
        print "fixed vertices:"
        print fixed_vert

    is_on_bound = sfedis.Functions([
        sfedis.Function('_is_on_bound',
                        _is_on_bound,
                        extra_args={
                            'bound': boundpnts,
                            'sdim': sdim,
                            'epsilon': lcar / 100.
                        }),
    ])
    fixed = domain.create_region('fixed',
                                 'vertices by _is_on_bound',
                                 'facet',
                                 functions=is_on_bound,
                                 add_to_regions=True)

    field_t = sfedis.fem.Field.from_args('temperature',
                                         np.float64,
                                         'scalar',
                                         omega,
                                         approx_order=2)
    t = sfedis.FieldVariable('t', 'unknown', field_t, 1)
    s = sfedis.FieldVariable('s', 'test', field_t, 1, primary_var_name='t')

    integral = sfedis.Integral('i', order=4)

    term1 = Term.new('dw_laplace(s, t)', integral, omega, s=s, t=t)
    term2 = Term.new('dw_volume_integrate(c.val, s)',
                     integral,
                     omega,
                     c=c,
                     s=s)  # heat source term for 1st step of far field
    eq = sfedis.Equation('temperature', term1 - term2)
    eqs = sfedis.Equations([eq])

    t_fixed = EssentialBC('t_fixed', fixed, {'t.0': 0.0})

    ls = ScipyDirect({})
    nls = Newton({'i_max': 1, 'eps_a': 1e-10}, lin_solver=ls)

    pb = sfedis.Problem('temperature', equations=eqs, nls=nls, ls=ls)
    pb.time_update(ebcs=Conditions([
        t_fixed,
    ]))

    temperature = pb.solve()
    out = temperature.create_output_dict()

    if verbose is True:
        pb.save_state('result.vtk', out=out)
        view = Viewer('result.vtk')
        view(is_wireframe=True, rel_scaling=1, is_scalar_bar=True)
        print "Maximum temperature: %f" % np.max(out['t'].data)

    data = [i[0] for i in out['t'].data]

    FF = _get_far(eltype, points, data, mesh, sdim, epsilon)
    str1 = ''.join(str(v) + ', ' for v in FF)[:-2]
    try:
        far = domain.create_region('far',
                                   'vertex %s' % str1,
                                   'facet',
                                   add_to_regions=True)
    except Exception as e:
        print "Far field region creation failed!"
        print(e)
        t.reset()
        s.reset()
        return

    area_source = pb.evaluate('d_surface.3.far(t)')

    fluxval = 1.0 / (area_source)
    c2 = sfedis.Material(
        'c2', val=fluxval
    )  # So that total heat at the far field is 1W equally distributed over all elements

    term1A = Term.new('dw_laplace(c.val, s, t)',
                      integral,
                      omega,
                      c=c,
                      s=s,
                      t=t)
    term2A = Term.new('dw_surface_integrate(c2.val, s)',
                      integral,
                      far,
                      c2=c2,
                      s=s)
    eq2 = sfedis.Equation('temperature2', term1A - term2A)
    eqs2 = sfedis.Equations([eq2])

    pb2 = sfedis.Problem('temperature2', equations=eqs2, nls=nls, ls=ls)
    pb2.time_update(ebcs=Conditions([
        t_fixed,
    ]))

    temperature2 = pb2.solve()
    out2 = temperature2.create_output_dict()
    volume = pb2.evaluate('d_volume.3.Omega(t)')

    t_int = pb2.evaluate('ev_volume_integrate.3.Omega(t)')

    avg_t = t_int / volume
    F = 1.0 / avg_t

    if verbose is True:
        print "Average temperature: %f" % avg_t

    if thickness:
        'Correction factor 1e-3 is due to geometry in mm instead of m'
        F = F * thickness * 1e-3

    if verbose is True:
        pb.save_state('result.vtk', out=out2)
        view = Viewer('result.vtk')
        view(is_wireframe=True, rel_scaling=1, is_scalar_bar=True)

    t.reset()
    s.reset()

    return F
Beispiel #14
0
def main():
    parser = OptionParser(usage=usage, version="%prog " + sfepy.__version__)
    parser.add_option(
        "-c",
        "--conf",
        metavar='"key : value, ..."',
        action="store",
        dest="conf",
        type="string",
        default=None,
        help=help["conf"],
    )
    parser.add_option(
        "-O",
        "--options",
        metavar='"key : value, ..."',
        action="store",
        dest="app_options",
        type="string",
        default=None,
        help=help["options"],
    )
    parser.add_option(
        "-d",
        "--define",
        metavar='"key : value, ..."',
        action="store",
        dest="define_args",
        type="string",
        default=None,
        help=help["define"],
    )
    parser.add_option(
        "-o", "", metavar="filename", action="store", dest="output_filename_trunk", default=None, help=help["filename"]
    )
    parser.add_option(
        "", "--format", metavar="format", action="store", dest="output_format", default=None, help=help["output_format"]
    )
    parser.add_option("", "--log", metavar="file", action="store", dest="log", default=None, help=help["log"])
    parser.add_option("-q", "--quiet", action="store_true", dest="quiet", default=False, help=help["quiet"])
    parser.add_option("", "--save-ebc", action="store_true", dest="save_ebc", default=False, help=help["save_ebc"])
    parser.add_option(
        "", "--save-ebc-nodes", action="store_true", dest="save_ebc_nodes", default=False, help=help["save_ebc_nodes"]
    )
    parser.add_option(
        "", "--save-regions", action="store_true", dest="save_regions", default=False, help=help["save_regions"]
    )
    parser.add_option(
        "",
        "--save-regions-as-groups",
        action="store_true",
        dest="save_regions_as_groups",
        default=False,
        help=help["save_regions_as_groups"],
    )
    parser.add_option(
        "",
        "--save-field-meshes",
        action="store_true",
        dest="save_field_meshes",
        default=False,
        help=help["save_field_meshes"],
    )
    parser.add_option("", "--solve-not", action="store_true", dest="solve_not", default=False, help=help["solve_not"])
    parser.add_option("", "--list", metavar="what", action="store", dest="_list", default=None, help=help["list"])

    options, args = parser.parse_args()

    if len(args) == 1:
        filename_in = args[0]
    else:
        if options._list == "terms":
            print_terms()
        else:
            parser.print_help(),
        return

    output.set_output(filename=options.log, quiet=options.quiet, combined=options.log is not None)

    required, other = get_standard_keywords()
    if options.solve_not:
        required.remove("equations")
        required.remove("solver_[0-9]+|solvers")
        other.extend(["equations"])

    conf = ProblemConf.from_file_and_options(filename_in, options, required, other, define_args=options.define_args)

    opts = conf.options
    output_prefix = opts.get("output_prefix", "sfepy:")

    app = PDESolverApp(conf, options, output_prefix)
    if hasattr(opts, "parametric_hook"):  # Parametric study.
        parametric_hook = conf.get_function(opts.parametric_hook)
        app.parametrize(parametric_hook)
    app()
Beispiel #15
0
def init_session(ipython=None, message=None, quiet=False, silent=False,
                 is_viewer=True, is_wx=True, argv=[]):
    """
    Initialize embedded IPython or Python session.
    """
    import os, sys, atexit

    in_ipython = False
    is_runsource = True

    _preexec_source = preexec_source
    if is_viewer:
        _preexec_source += preexec_source_viewer

    if ipython is False:
        ip = _init_python_session()
        mainloop = ip.interact

    else:
        try:
            import IPython

        except ImportError:
            if ipython is not True:
                print no_ipython
                ip = _init_python_session()
                mainloop = ip.interact

            else:
                raise RuntimeError('IPython is not available on this system')

        else:
            ipython = True
            if IPython.__version__ >= '0.11':
                try:
                    ip = get_ipython()
                except NameError:
                    ip = None

            else:
                ip = IPython.ipapi.get()
                if ip:
                    ip = ip.IP

            if ip is not None:
                in_ipython = True

            else:
                ip = _init_ipython_session(is_wx, _preexec_source, argv)

            if IPython.__version__ >= '0.11':
                # runsource is gone, use run_cell instead, which doesn't
                # take a symbol arg.  The second arg is `store_history`,
                # and False means don't add the line to IPython's history.
                ip.runsource = lambda src, symbol='exec': \
                               ip.run_cell(src, False)
                mainloop = ip.mainloop

            else:
                if is_wx:
                    mainloop = ip.mainloop
                    is_runsource = False

                else:
                    mainloop = ip.interact

    if is_runsource:
        ip.runsource(_preexec_source, symbol='exec')

    message = _make_message(ipython, quiet, _preexec_source)

    output.set_output(filename=os.path.join(sfepy_config_dir, 'isfepy.log'),
                      combined=silent == False,
                      append=True)
    atexit.register(output, 'isfepy finished\n' + '*' * 55)

    if not in_ipython:
        if is_runsource:
            mainloop(message)

        else:
            mainloop(banner=message)

        sys.exit('Exiting ...')

    else:
        ip.write(message)
        ip.set_hook('shutdown_hook', lambda ip: ip.write('Exiting ...\n'))
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='1.0,1.0,1.0',
                        help=helps['dims'])
    parser.add_argument('--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='11,11,11',
                        help=helps['shape'])
    parser.add_argument('--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='0.0,0.0,0.0',
                        help=helps['centre'])
    parser.add_argument('-2',
                        '--2d',
                        action='store_true',
                        dest='is_2d',
                        default=False,
                        help=helps['2d'])
    parser.add_argument('--u-order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order_u',
                        default=1,
                        help=helps['u-order'])
    parser.add_argument('--p-order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order_p',
                        default=1,
                        help=helps['p-order'])
    parser.add_argument('--linearization',
                        choices=['strip', 'adaptive'],
                        action='store',
                        dest='linearization',
                        default='strip',
                        help=helps['linearization'])
    parser.add_argument('--metis',
                        action='store_true',
                        dest='metis',
                        default=False,
                        help=helps['metis'])
    parser.add_argument('--silent',
                        action='store_true',
                        dest='silent',
                        default=False,
                        help=helps['silent'])
    parser.add_argument('--clear',
                        action='store_true',
                        dest='clear',
                        default=False,
                        help=helps['clear'])
    options, petsc_opts = parser.parse_known_args()

    comm = pl.PETSc.COMM_WORLD

    output_dir = options.output_dir

    filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank)
    if comm.rank == 0:
        ensure_path(filename)
    comm.barrier()

    output.prefix = 'sfepy_%02d:' % comm.rank
    output.set_output(filename=filename, combined=options.silent == False)

    output('petsc options:', petsc_opts)

    mesh_filename = os.path.join(options.output_dir, 'para.h5')

    if comm.rank == 0:
        from sfepy.mesh.mesh_generators import gen_block_mesh

        if options.clear:
            for _f in chain(*[
                    glob.glob(os.path.join(output_dir, clean_pattern))
                    for clean_pattern in ['*.h5', '*.txt', '*.png']
            ]):
                output('removing "%s"' % _f)
                os.remove(_f)

        dim = 2 if options.is_2d else 3
        dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

        output('dimensions:', dims)
        output('shape:     ', shape)
        output('centre:    ', centre)

        mesh = gen_block_mesh(dims,
                              shape,
                              centre,
                              name='block-fem',
                              verbose=True)
        mesh.write(mesh_filename, io='auto')

    comm.barrier()

    output('field u order:', options.order_u)
    output('field p order:', options.order_p)

    solve_problem(mesh_filename, options, comm)
Beispiel #17
0
)
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC
from sfepy.solvers.ls import ScipyDirect
from sfepy.solvers.nls import Newton
import sfepy.discrete.fem.periodic as per
from sfepy.discrete import Functions
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.mechanics.matcoefs import ElasticConstants
from sfepy.base.base import output
from sfepy.discrete.conditions import LinearCombinationBC
from sfepy.mechanics.matcoefs import stiffness_from_lame


goptions["verbose"] = False
output.set_output(quiet=True)


def sequence(*args):
    """Compose functions in order

    Args:
      args: the functions to compose

    Returns:
      composed functions

    """
    return compose(*args[::-1])

Beispiel #18
0
def main():
    parser = OptionParser(usage = usage, version = "%prog " + sfepy.__version__)
    parser.add_option('-c', '--conf', metavar='"key : value, ..."',
                      action='store', dest='conf', type='string',
                      default=None, help= help['conf'])
    parser.add_option('-O', '--options', metavar='"key : value, ..."',
                      action='store', dest='app_options', type='string',
                      default=None, help=help['options'])
    parser.add_option('-d', '--define', metavar='"key : value, ..."',
                      action='store', dest='define_args', type='string',
                      default=None, help=help['define'])
    parser.add_option( "-o", "", metavar = 'filename',
                       action = "store", dest = "output_filename_trunk",
                       default = None, help = help['filename'] )
    parser.add_option( "", "--format", metavar = 'format',
                       action = "store", dest = "output_format",
                       default = None, help = help['output_format'] )
    parser.add_option( "", "--log", metavar = 'file',
                       action = "store", dest = "log",
                       default = None, help = help['log'] )
    parser.add_option( "-q", "--quiet",
                       action = "store_true", dest = "quiet",
                       default = False, help = help['quiet'] )
    parser.add_option( "", "--save-ebc",
                       action = "store_true", dest = "save_ebc",
                       default = False, help = help['save_ebc'] )
    parser.add_option( "", "--save-regions",
                       action = "store_true", dest = "save_regions",
                       default = False, help = help['save_regions'] )
    parser.add_option( "", "--save-regions-as-groups",
                       action = "store_true", dest = "save_regions_as_groups",
                       default = False, help = help['save_regions_as_groups'] )
    parser.add_option( "", "--save-field-meshes",
                       action = "store_true", dest = "save_field_meshes",
                       default = False, help = help['save_field_meshes'] )
    parser.add_option( "", "--solve-not",
                       action = "store_true", dest = "solve_not",
                       default = False, help = help['solve_not'] )
    parser.add_option( "", "--list", metavar = 'what',
                       action = "store", dest = "_list",
                       default = None, help = help['list'] )

    options, args = parser.parse_args()

    if (len( args ) == 1):
        filename_in = args[0];
    else:
        if options._list == 'terms':
            print_terms()
        else:
            parser.print_help(),
        return

    output.set_output(filename=options.log,
                      quiet=options.quiet,
                      combined=options.log is not None)

    required, other = get_standard_keywords()
    if options.solve_not:
        required.remove( 'equations' )
        required.remove( 'solver_[0-9]+|solvers' )
        other.extend( ['equations'] )

    conf = ProblemConf.from_file_and_options(filename_in, options,
                                             required, other,
                                             define_args=options.define_args)

    opts = conf.options
    output_prefix = get_default_attr( opts, 'output_prefix', 'sfepy:' )

    app = SimpleApp( conf, options, output_prefix )
    if hasattr( opts, 'parametric_hook' ): # Parametric study.
        parametric_hook = conf.get_function(opts.parametric_hook)
        app.parametrize( parametric_hook )
    app()
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims', metavar='dims',
                        action='store', dest='dims',
                        default='1.0,1.0,1.0', help=helps['dims'])
    parser.add_argument('--shape', metavar='shape',
                        action='store', dest='shape',
                        default='11,11,11', help=helps['shape'])
    parser.add_argument('--centre', metavar='centre',
                        action='store', dest='centre',
                        default='0.0,0.0,0.0', help=helps['centre'])
    parser.add_argument('-2', '--2d',
                        action='store_true', dest='is_2d',
                        default=False, help=helps['2d'])
    parser.add_argument('--u-order', metavar='int', type=int,
                        action='store', dest='order_u',
                        default=1, help=helps['u-order'])
    parser.add_argument('--p-order', metavar='int', type=int,
                        action='store', dest='order_p',
                        default=1, help=helps['p-order'])
    parser.add_argument('--linearization', choices=['strip', 'adaptive'],
                        action='store', dest='linearization',
                        default='strip', help=helps['linearization'])
    parser.add_argument('--metis',
                        action='store_true', dest='metis',
                        default=False, help=helps['metis'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    parser.add_argument('--clear',
                        action='store_true', dest='clear',
                        default=False, help=helps['clear'])
    options, petsc_opts = parser.parse_known_args()

    comm = pl.PETSc.COMM_WORLD

    output_dir = options.output_dir

    filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank)
    if comm.rank == 0:
        ensure_path(filename)
    comm.barrier()

    output.prefix = 'sfepy_%02d:' % comm.rank
    output.set_output(filename=filename, combined=options.silent == False)

    output('petsc options:', petsc_opts)

    mesh_filename = os.path.join(options.output_dir, 'para.h5')

    if comm.rank == 0:
        from sfepy.mesh.mesh_generators import gen_block_mesh

        if options.clear:
            for _f in chain(*[glob.glob(os.path.join(output_dir, clean_pattern))
                              for clean_pattern
                              in ['*.h5', '*.txt', '*.png']]):
                output('removing "%s"' % _f)
                os.remove(_f)

        dim = 2 if options.is_2d else 3
        dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

        output('dimensions:', dims)
        output('shape:     ', shape)
        output('centre:    ', centre)

        mesh = gen_block_mesh(dims, shape, centre, name='block-fem',
                              verbose=True)
        mesh.write(mesh_filename, io='auto')

    comm.barrier()

    output('field u order:', options.order_u)
    output('field p order:', options.order_p)

    solve_problem(mesh_filename, options, comm)
Beispiel #20
0
def main():
    # if multi_mpi.cpu_count() < 2:
    #     raise ValueError('MPI mode - the number of nodes is less then 2!')

    if multi_mpi.mpi_rank == multi_mpi.mpi_master:
        # MPI master node - solve problem at macro scale
        parser = ArgumentParser(description=__doc__,
                                formatter_class=RawDescriptionHelpFormatter)
        parser.add_argument('--debug',
                            action='store_true',
                            dest='debug',
                            default=False,
                            help=helps['debug'])
        parser.add_argument('--debug_mpi',
                            action='store_true',
                            dest='debug_mpi',
                            default=False,
                            help=helps['debug_mpi'])
        parser.add_argument('-c',
                            '--conf',
                            metavar='"key : value, ..."',
                            action='store',
                            dest='conf',
                            type=str,
                            default=None,
                            help=helps['conf'])
        parser.add_argument('-O',
                            '--options',
                            metavar='"key : value, ..."',
                            action='store',
                            dest='app_options',
                            type=str,
                            default=None,
                            help=helps['options'])
        parser.add_argument('-d',
                            '--define',
                            metavar='"key : value, ..."',
                            action='store',
                            dest='define_args',
                            type=str,
                            default=None,
                            help=helps['define'])
        parser.add_argument('-o',
                            metavar='filename',
                            action='store',
                            dest='output_filename_trunk',
                            default=None,
                            help=helps['filename'])
        parser.add_argument('--format',
                            metavar='format',
                            action='store',
                            dest='output_format',
                            default=None,
                            help=helps['output_format'])
        parser.add_argument('--log',
                            metavar='file',
                            action='store',
                            dest='log',
                            default=None,
                            help=helps['log'])
        parser.add_argument('-q',
                            '--quiet',
                            action='store_true',
                            dest='quiet',
                            default=False,
                            help=helps['quiet'])
        group = parser.add_mutually_exclusive_group(required=True)
        group.add_argument('filename_in', nargs='?')
        options = parser.parse_args()

        for k in [
                'save_ebc', 'save_ebc_nodes', 'save_regions',
                'save_regions_as_groups', 'save_field_meshes', 'solve_not'
        ]:
            setattr(options, k, False)

        if options.debug:
            from sfepy.base.base import debug_on_error
            debug_on_error()

        if options.debug_mpi:
            multi_mpi.set_logging_level('debug')

        filename_in = options.filename_in
        output.set_output(filename=options.log,
                          quiet=options.quiet,
                          combined=options.log is not None)

        required, other = get_standard_keywords()
        conf = ProblemConf.from_file_and_options(
            filename_in,
            options,
            required,
            other,
            define_args=options.define_args)

        opts = conf.options
        nslaves = multi_mpi.cpu_count() - 1
        opts.n_mpi_homog_slaves = nslaves
        output_prefix = opts.get('output_prefix', 'sfepy:')

        app = PDESolverApp(conf, options, output_prefix)
        if hasattr(opts, 'parametric_hook'):  # Parametric study.
            parametric_hook = conf.get_function(opts.parametric_hook)
            app.parametrize(parametric_hook)
        app()

        multi_mpi.master_send_task('finalize', None)
    else:
        # MPI slave mode - calculate homogenized coefficients
        homogen_app = None
        done = False
        rank = multi_mpi.mpi_rank
        while not done:
            task, data = multi_mpi.slave_get_task('main slave loop')

            if task == 'init':  # data: micro_file, n_micro
                output.set_output(filename='homog_app_mpi_%d.log' % rank,
                                  quiet=True)
                micro_file, n_micro = data[:2]
                required, other = get_standard_keywords()
                required.remove('equations')
                conf = ProblemConf.from_file(micro_file,
                                             required,
                                             other,
                                             verbose=False)
                options = Struct(output_filename_trunk=None)
                homogen_app = HomogenizationApp(conf,
                                                options,
                                                'micro:',
                                                n_micro=n_micro)
            elif task == 'calculate':  # data: rel_def_grad, ts, iteration
                macro_data, ts, iteration = data[:3]
                homogen_app.setup_macro_data(macro_data)
                homogen_app(ret_all=True, itime=ts.step, iiter=iteration)
            elif task == 'finalize':
                done = True
Beispiel #21
0
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims', metavar='dims',
                        action='store', dest='dims',
                        default='1.0,1.0,1.0', help=helps['dims'])
    parser.add_argument('--shape', metavar='shape',
                        action='store', dest='shape',
                        default='11,11,11', help=helps['shape'])
    parser.add_argument('--centre', metavar='centre',
                        action='store', dest='centre',
                        default='0.0,0.0,0.0', help=helps['centre'])
    parser.add_argument('-2', '--2d',
                        action='store_true', dest='is_2d',
                        default=False, help=helps['2d'])
    parser.add_argument('--u-order', metavar='int', type=int,
                        action='store', dest='order_u',
                        default=1, help=helps['u-order'])
    parser.add_argument('--p-order', metavar='int', type=int,
                        action='store', dest='order_p',
                        default=1, help=helps['p-order'])
    parser.add_argument('--linearization', choices=['strip', 'adaptive'],
                        action='store', dest='linearization',
                        default='strip', help=helps['linearization'])
    parser.add_argument('--metis',
                        action='store_true', dest='metis',
                        default=False, help=helps['metis'])
    parser.add_argument('--save-inter-regions',
                        action='store_true', dest='save_inter_regions',
                        default=False, help=helps['save_inter_regions'])
    parser.add_argument('--stats', metavar='filename',
                        action='store', dest='stats_filename',
                        default=None, help=helps['stats_filename'])
    parser.add_argument('--new-stats',
                        action='store_true', dest='new_stats',
                        default=False, help=helps['new_stats'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    parser.add_argument('--clear',
                        action='store_true', dest='clear',
                        default=False, help=helps['clear'])
    options, petsc_opts = parser.parse_known_args()

    comm = pl.PETSc.COMM_WORLD

    output_dir = options.output_dir

    filename = os.path.join(output_dir, 'output_log_%02d.txt' % comm.rank)
    if comm.rank == 0:
        ensure_path(filename)
    comm.barrier()

    output.prefix = 'sfepy_%02d:' % comm.rank
    output.set_output(filename=filename, combined=options.silent == False)

    output('petsc options:', petsc_opts)

    mesh_filename = os.path.join(options.output_dir, 'para.h5')

    dim = 2 if options.is_2d else 3
    dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

    output('dimensions:', dims)
    output('shape:     ', shape)
    output('centre:    ', centre)

    if comm.rank == 0:
        from sfepy.mesh.mesh_generators import gen_block_mesh

        if options.clear:
            remove_files_patterns(output_dir,
                                  ['*.h5', '*.mesh', '*.txt'],
                                  ignores=['output_log_%02d.txt' % ii
                                           for ii in range(comm.size)],
                                  verbose=True)

        save_options(os.path.join(output_dir, 'options.txt'),
                     [('options', vars(options))])

        mesh = gen_block_mesh(dims, shape, centre, name='block-fem',
                              verbose=True)
        mesh.write(mesh_filename, io='auto')

    comm.barrier()

    output('field u order:', options.order_u)
    output('field p order:', options.order_p)

    stats = solve_problem(mesh_filename, options, comm)
    output(stats)

    if options.stats_filename:
        from examples.diffusion.poisson_parallel_interactive import save_stats
        if comm.rank == 0:
            ensure_path(options.stats_filename)
        comm.barrier()

        pars = Struct(dim=dim, shape=shape, order=options.order_u)
        pl.call_in_rank_order(
            lambda rank, comm:
            save_stats(options.stats_filename, pars, stats, options.new_stats,
                       rank, comm),
            comm
        )
Beispiel #22
0
import scipy.sparse.linalg as sla
import matplotlib.pyplot as plt

sys.path.append('/home/bbales2/sfepy/')

from sfepy.base.base import assert_, output, Struct
from sfepy.discrete import (FieldVariable, Material, Integral, Integrals,
                            Equation, Equations, Problem)
from sfepy.discrete.fem import Mesh, FEDomain, Field
from sfepy.terms import Term
from sfepy.discrete.conditions import Conditions, EssentialBC
from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson
from sfepy.mesh.mesh_generators import gen_block_mesh
from sfepy.solvers import Solver
from sfepy.base.base import output
output.set_output(quiet=True)
import numpy
import scipy

aux = "eig.scipy,method:'eigh',tol:1e-7,maxiter:10000".split(',')
kwargs = {}
for option in aux[1:]:
    key, val = option.split(':')
    kwargs[key.strip()] = eval(val)
eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

dims = nm.array([1.0, 1.5], dtype=nm.float64)
dim = len(dims)

centre = nm.array([0.0, 0.0], dtype=nm.float64)[:dim]
shape = nm.array([11, 16], dtype=nm.int32)[:dim]
Beispiel #23
0
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version',
                        action='version',
                        version='%(prog)s ' + sfepy.__version__)
    parser.add_argument('--debug',
                        action='store_true',
                        dest='debug',
                        default=False,
                        help=helps['debug'])
    parser.add_argument('-c',
                        '--conf',
                        metavar='"key : value, ..."',
                        action='store',
                        dest='conf',
                        type=str,
                        default=None,
                        help=helps['conf'])
    parser.add_argument('-O',
                        '--options',
                        metavar='"key : value, ..."',
                        action='store',
                        dest='app_options',
                        type=str,
                        default=None,
                        help=helps['options'])
    parser.add_argument('-d',
                        '--define',
                        metavar='"key : value, ..."',
                        action='store',
                        dest='define_args',
                        type=str,
                        default=None,
                        help=helps['define'])
    parser.add_argument('-o',
                        metavar='filename',
                        action='store',
                        dest='output_filename_trunk',
                        default=None,
                        help=helps['filename'])
    parser.add_argument('--format',
                        metavar='format',
                        action='store',
                        dest='output_format',
                        default=None,
                        help=helps['output_format'])
    parser.add_argument('--save-restart',
                        metavar='mode',
                        type=int,
                        action='store',
                        dest='save_restart',
                        default=None,
                        help=helps['save_restart'])
    parser.add_argument('--load-restart',
                        metavar='filename',
                        action='store',
                        dest='load_restart',
                        default=None,
                        help=helps['load_restart'])
    parser.add_argument('--log',
                        metavar='file',
                        action='store',
                        dest='log',
                        default=None,
                        help=helps['log'])
    parser.add_argument('-q',
                        '--quiet',
                        action='store_true',
                        dest='quiet',
                        default=False,
                        help=helps['quiet'])
    parser.add_argument('--save-ebc',
                        action='store_true',
                        dest='save_ebc',
                        default=False,
                        help=helps['save_ebc'])
    parser.add_argument('--save-ebc-nodes',
                        action='store_true',
                        dest='save_ebc_nodes',
                        default=False,
                        help=helps['save_ebc_nodes'])
    parser.add_argument('--save-regions',
                        action='store_true',
                        dest='save_regions',
                        default=False,
                        help=helps['save_regions'])
    parser.add_argument('--save-regions-as-groups',
                        action='store_true',
                        dest='save_regions_as_groups',
                        default=False,
                        help=helps['save_regions_as_groups'])
    parser.add_argument('--save-field-meshes',
                        action='store_true',
                        dest='save_field_meshes',
                        default=False,
                        help=helps['save_field_meshes'])
    parser.add_argument('--solve-not',
                        action='store_true',
                        dest='solve_not',
                        default=False,
                        help=helps['solve_not'])
    group = parser.add_mutually_exclusive_group(required=True)
    group.add_argument('--list',
                       metavar='what',
                       action='store',
                       dest='_list',
                       default=None,
                       help=helps['list'])
    group.add_argument('filename_in', nargs='?')
    options, petsc_opts = parser.parse_known_args()

    if options._list is not None:
        if options._list == 'terms':
            print_terms()

        elif options._list == 'solvers':
            print_solvers()

        return

    if options.debug:
        from sfepy.base.base import debug_on_error
        debug_on_error()

    filename_in = options.filename_in
    output.set_output(filename=options.log,
                      quiet=options.quiet,
                      combined=options.log is not None)

    required, other = get_standard_keywords()
    if options.solve_not:
        required.remove('equations')
        required.remove('solver_[0-9]+|solvers')
        other.extend(['equations'])

    conf = ProblemConf.from_file_and_options(filename_in,
                                             options,
                                             required,
                                             other,
                                             define_args=options.define_args)

    opts = conf.options
    output_prefix = opts.get('output_prefix', 'sfepy:')

    opts.save_restart = options.save_restart
    opts.load_restart = options.load_restart

    if conf.options.get('evps') is None:
        app = PDESolverApp(conf, options, output_prefix)

    else:
        app = EVPSolverApp(conf, options, output_prefix)

    if hasattr(opts, 'parametric_hook'):  # Parametric study.
        parametric_hook = conf.get_function(opts.parametric_hook)
        app.parametrize(parametric_hook)
    app()
Beispiel #24
0
def recover_micro_hook(micro_filename, region, macro,
                       naming_scheme='step_iel',
                       recovery_file_tag='',
                       define_args=None, verbose=False):
    # Create a micro-problem instance.
    required, other = get_standard_keywords()
    required.remove('equations')
    conf = ProblemConf.from_file(micro_filename, required, other,
                                 verbose=False, define_args=define_args)

    coefs_filename = conf.options.get('coefs_filename', 'coefs')
    output_dir = conf.options.get('output_dir', '.')
    coefs_filename = op.join(output_dir, coefs_filename) + '.h5'

    # Coefficients and correctors
    coefs = Coefficients.from_file_hdf5(coefs_filename)
    corrs = get_correctors_from_file(dump_names=coefs.dump_names)

    recovery_hook = conf.options.get('recovery_hook', None)

    if recovery_hook is not None:
        recovery_hook = conf.get_function(recovery_hook)
        pb = Problem.from_conf(conf, init_equations=False, init_solvers=False)

        format = get_print_info(pb.domain.mesh.n_el, fill='0')[1]

        output('recovering microsctructures...')
        tt = time.clock()
        output_fun = output.output_function
        output_level = output.level
        for ii, iel in enumerate(region.cells):
            output.level = output_level
            output('micro: %d (el=%d)' % (ii, iel))

            local_macro = {}
            for k, v in six.iteritems(macro):
                local_macro[k] = v[ii, 0]

            output.set_output(quiet=not(verbose))
            out = recovery_hook(pb, corrs, local_macro)
            output.output_function = output_fun

            if ii == 0:
                new_keys = []
                new_data = {}
                new_idxs = []
                for k in six.iterkeys(local_macro):
                    if k not in macro:
                        new_keys.append(k)
                        new_data[k] = []

            new_idxs.append(ii)
            for jj in new_keys:
                new_data[jj].append(local_macro[jj])

            # save data
            if out is not None:
                suffix = format % iel
                micro_name = pb.get_output_name(extra='recovered_'
                                                + recovery_file_tag + suffix)
                filename = op.join(output_dir, op.basename(micro_name))
                fpv = pb.conf.options.get('file_per_var', False)
                pb.save_state(filename, out=out,
                              file_per_var=fpv)

        output('...done in %.2f s' % (time.clock() - tt))

        for jj in new_keys:
            lout = new_data[jj]
            macro[jj] = nm.zeros((nm.max(new_idxs) + 1, 1) + lout[0].shape,
                                 dtype=lout[0].dtype)
            out = macro[jj]
            for kk, ii in enumerate(new_idxs):
                out[ii, 0] = lout[kk]
Beispiel #25
0
def main():
    # Aluminium and epoxy.
    default_pars = '70e9,0.35,2.799e3, 3.8e9,0.27,1.142e3'
    default_solver_conf = ("kind='eig.scipy',method='eigsh',tol=1.0e-5,"
                           "maxiter=1000,which='LM',sigma=0.0")

    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--pars', metavar='young1,poisson1,density1'
                        ',young2,poisson2,density2',
                        action='store', dest='pars',
                        default=default_pars, help=helps['pars'])
    parser.add_argument('--conf', metavar='filename',
                        action='store', dest='conf',
                        default=None, help=helps['conf'])
    parser.add_argument('--define-kwargs', metavar='dict-like',
                        action='store', dest='define_kwargs',
                        default=None, help=helps['define_kwargs'])
    parser.add_argument('--mesh-size', type=float, metavar='float',
                        action='store', dest='mesh_size',
                        default=None, help=helps['mesh_size'])
    parser.add_argument('--unit-multipliers',
                        metavar='c_time,c_length,c_mass',
                        action='store', dest='unit_multipliers',
                        default='1.0,1.0,1.0', help=helps['unit_multipliers'])
    parser.add_argument('--plane', action='store', dest='plane',
                        choices=['strain', 'stress'],
                        default='strain', help=helps['plane'])
    parser.add_argument('--wave-dir', metavar='float,float[,float]',
                        action='store', dest='wave_dir',
                        default='1.0,0.0,0.0', help=helps['wave_dir'])
    parser.add_argument('--mode', action='store', dest='mode',
                        choices=['omega', 'kappa'],
                        default='omega', help=helps['mode'])
    parser.add_argument('--stepper', action='store', dest='stepper',
                        choices=['linear', 'brillouin'],
                        default='linear', help=helps['stepper'])
    parser.add_argument('--range', metavar='start,stop,count',
                        action='store', dest='range',
                        default='0,6.4,33', help=helps['range'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('--refine', metavar='int', type=int,
                        action='store', dest='refine',
                        default=0, help=helps['refine'])
    parser.add_argument('-n', '--n-eigs', metavar='int', type=int,
                        action='store', dest='n_eigs',
                        default=6, help=helps['n_eigs'])
    group = parser.add_mutually_exclusive_group()
    group.add_argument('--eigs-only',
                       action='store_true', dest='eigs_only',
                       default=False, help=helps['eigs_only'])
    group.add_argument('--post-process',
                       action='store_true', dest='post_process',
                       default=False, help=helps['post_process'])
    parser.add_argument('--solver-conf', metavar='dict-like',
                        action='store', dest='solver_conf',
                        default=default_solver_conf, help=helps['solver_conf'])
    parser.add_argument('--save-regions',
                        action='store_true', dest='save_regions',
                        default=False, help=helps['save_regions'])
    parser.add_argument('--save-materials',
                        action='store_true', dest='save_materials',
                        default=False, help=helps['save_materials'])
    parser.add_argument('--log-std-waves',
                        action='store_true', dest='log_std_waves',
                        default=False, help=helps['log_std_waves'])
    parser.add_argument('--no-legends',
                        action='store_false', dest='show_legends',
                        default=True, help=helps['no_legends'])
    parser.add_argument('--no-show',
                        action='store_false', dest='show',
                        default=True, help=helps['no_show'])
    parser.add_argument('--silent',
                        action='store_true', dest='silent',
                        default=False, help=helps['silent'])
    parser.add_argument('-c', '--clear',
                        action='store_true', dest='clear',
                        default=False, help=helps['clear'])
    parser.add_argument('-o', '--output-dir', metavar='path',
                        action='store', dest='output_dir',
                        default='output', help=helps['output_dir'])
    parser.add_argument('mesh_filename', default='',
                        help=helps['mesh_filename'])
    options = parser.parse_args()

    output_dir = options.output_dir

    output.set_output(filename=os.path.join(output_dir,'output_log.txt'),
                      combined=options.silent == False)

    if options.conf is not None:
        mod = import_file(options.conf)

    else:
        mod = sys.modules[__name__]

    apply_units = mod.apply_units
    define = mod.define
    set_wave_dir = mod.set_wave_dir
    setup_n_eigs = mod.setup_n_eigs
    build_evp_matrices = mod.build_evp_matrices
    save_materials = mod.save_materials
    get_std_wave_fun = mod.get_std_wave_fun
    get_stepper = mod.get_stepper
    process_evp_results = mod.process_evp_results

    options.pars = [float(ii) for ii in options.pars.split(',')]
    options.unit_multipliers = [float(ii)
                                for ii in options.unit_multipliers.split(',')]
    options.wave_dir = [float(ii)
                        for ii in options.wave_dir.split(',')]
    aux = options.range.split(',')
    options.range = [float(aux[0]), float(aux[1]), int(aux[2])]
    options.solver_conf = dict_from_string(options.solver_conf)
    options.define_kwargs = dict_from_string(options.define_kwargs)

    if options.clear:
        remove_files_patterns(output_dir,
                              ['*.h5', '*.vtk', '*.txt'],
                              ignores=['output_log.txt'],
                              verbose=True)

    filename = os.path.join(output_dir, 'options.txt')
    ensure_path(filename)
    save_options(filename, [('options', vars(options))],
                 quote_command_line=True)

    pars = apply_units(options.pars, options.unit_multipliers)
    output('material parameters with applied unit multipliers:')
    output(pars)

    if options.mode == 'omega':
        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['wave_number', 'wave_number'],
                                         options.unit_multipliers)
        output('wave number range with applied unit multipliers:', rng)

    else:
        if options.stepper == 'brillouin':
            raise ValueError('Cannot use "brillouin" stepper in kappa mode!')

        rng = copy(options.range)
        rng[:2] = apply_unit_multipliers(options.range[:2],
                                         ['frequency', 'frequency'],
                                         options.unit_multipliers)
        output('frequency range with applied unit multipliers:', rng)

    pb, wdir, bzone, mtxs = assemble_matrices(define, mod, pars, set_wave_dir,
                                              options)
    dim = pb.domain.shape.dim

    if dim != 2:
        options.plane = 'strain'

    if options.save_regions:
        pb.save_regions_as_groups(os.path.join(output_dir, 'regions'))

    if options.save_materials:
        save_materials(output_dir, pb, options)

    conf = pb.solver_confs['eig']
    eig_solver = Solver.any_from_conf(conf)

    n_eigs, options.n_eigs = setup_n_eigs(options, pb, mtxs)

    get_color = lambda ii: plt.cm.viridis((float(ii) / (options.n_eigs - 1)))
    plot_kwargs = [{'color' : get_color(ii), 'ls' : '', 'marker' : 'o'}
                  for ii in range(options.n_eigs)]
    get_color_dim = lambda ii: plt.cm.viridis((float(ii) / (dim-1)))
    plot_kwargs_dim = [{'color' : get_color_dim(ii), 'ls' : '', 'marker' : 'o'}
                       for ii in range(dim)]

    log_names = []
    log_plot_kwargs = []
    if options.log_std_waves:
        std_wave_fun, log_names, log_plot_kwargs = get_std_wave_fun(
            pb, options)

    else:
        std_wave_fun = None

    stepper = get_stepper(rng, pb, options)

    if options.mode == 'omega':
        eigenshapes_filename = os.path.join(output_dir,
                                            'frequency-eigenshapes-%s.vtk'
                                            % stepper.suffix)

        if options.stepper == 'linear':
            log = Log([[r'$\lambda_{%d}$' % ii for ii in range(options.n_eigs)],
                   [r'$\omega_{%d}$'
                    % ii for ii in range(options.n_eigs)] + log_names],
                  plot_kwargs=[plot_kwargs, plot_kwargs + log_plot_kwargs],
                  formats=[['{:.5e}'] * options.n_eigs,
                           ['{:.5e}'] * (options.n_eigs + len(log_names))],
                  yscales=['linear', 'linear'],
                  xlabels=[r'$\kappa$', r'$\kappa$'],
                  ylabels=[r'eigenvalues $\lambda_i$',
                           r'frequencies $\omega_i$'],
                  show_legends=options.show_legends,
                  is_plot=options.show,
                  log_filename=os.path.join(output_dir, 'frequencies.txt'),
                  aggregate=1000, sleep=0.1)

        else:
            log = Log([[r'$\kappa_{%d}$'% ii for ii in range(dim)],
                       [r'$\omega_{%d}$'
                        % ii for ii in range(options.n_eigs)] + log_names],
                      plot_kwargs=[plot_kwargs_dim,
                                   plot_kwargs + log_plot_kwargs],
                      formats=[['{:.5e}'] * dim,
                               ['{:.5e}'] * (options.n_eigs + len(log_names))],
                      yscales=['linear', 'linear'],
                      xlabels=[r'', r''],
                      ylabels=[r'wave vector $\kappa$',
                               r'frequencies $\omega_i$'],
                      show_legends=options.show_legends,
                      is_plot=options.show,
                      log_filename=os.path.join(output_dir, 'frequencies.txt'),
                      aggregate=1000, sleep=0.1)

        for aux in stepper:
            if options.stepper == 'linear':
                iv, wmag = aux

            else:
                iv, wmag, wdir = aux

            output('step %d: wave vector %s' % (iv, wmag * wdir))

            if options.stepper == 'brillouin':
                pb, _, bzone, mtxs = assemble_matrices(
                    define, mod, pars, set_wave_dir, options, wdir=wdir)

            evp_mtxs = build_evp_matrices(mtxs, wmag, options.mode, pb)

            if options.eigs_only:
                eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                         eigenvectors=True)

            omegas, svecs, out = process_evp_results(
                eigs, svecs, wmag, wdir, bzone, pb, mtxs, options,
                std_wave_fun=std_wave_fun
            )
            if options.stepper == 'linear':
                log(*out, x=[wmag, wmag])

            else:
                log(*out, x=[iv, iv])

            save_eigenvectors(eigenshapes_filename % iv, svecs, wmag, wdir, pb)

            gc.collect()

        log(save_figure=os.path.join(output_dir, 'frequencies.png'))
        log(finished=True)

    else:
        eigenshapes_filename = os.path.join(output_dir,
                                            'wave-number-eigenshapes-%s.vtk'
                                            % stepper.suffix)

        log = Log([[r'$\kappa_{%d}$' % ii for ii in range(options.n_eigs)]
                   + log_names],
                  plot_kwargs=[plot_kwargs + log_plot_kwargs],
                  formats=[['{:.5e}'] * (options.n_eigs + len(log_names))],
                  yscales=['linear'],
                  xlabels=[r'$\omega$'],
                  ylabels=[r'wave numbers $\kappa_i$'],
                  show_legends=options.show_legends,
                  is_plot=options.show,
                  log_filename=os.path.join(output_dir, 'wave-numbers.txt'),
                  aggregate=1000, sleep=0.1)
        for io, omega in stepper:
            output('step %d: frequency %s' % (io, omega))

            evp_mtxs = build_evp_matrices(mtxs, omega, options.mode, pb)

            if options.eigs_only:
                eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                  eigenvectors=False)
                svecs = None

            else:
                eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs,
                                         eigenvectors=True)

            kappas, svecs, out = process_evp_results(
                eigs, svecs, omega, wdir, bzone, pb, mtxs, options,
                std_wave_fun=std_wave_fun
            )
            log(*out, x=[omega])

            save_eigenvectors(eigenshapes_filename % io, svecs, kappas, wdir,
                              pb)

            gc.collect()

        log(save_figure=os.path.join(output_dir, 'wave-numbers.png'))
        log(finished=True)
Beispiel #26
0
def init_session(ipython=None,
                 message=None,
                 quiet=False,
                 silent=False,
                 is_viewer=True,
                 is_wx=True,
                 argv=[]):
    """
    Initialize embedded IPython or Python session.
    """
    import os, sys, atexit

    in_ipython = False
    is_runsource = True

    _preexec_source = preexec_source
    if is_viewer:
        _preexec_source += preexec_source_viewer

    if ipython is False:
        ip = _init_python_session()
        mainloop = ip.interact

    else:
        try:
            import IPython

        except ImportError:
            if ipython is not True:
                print no_ipython
                ip = _init_python_session()
                mainloop = ip.interact

            else:
                raise RuntimeError('IPython is not available on this system')

        else:
            ipython = True
            if IPython.__version__ >= '0.11':
                try:
                    ip = get_ipython()
                except NameError:
                    ip = None

            else:
                ip = IPython.ipapi.get()
                if ip:
                    ip = ip.IP

            if ip is not None:
                in_ipython = True

            else:
                ip = _init_ipython_session(is_wx, _preexec_source, argv)

            if IPython.__version__ >= '0.11':
                # runsource is gone, use run_cell instead, which doesn't
                # take a symbol arg.  The second arg is `store_history`,
                # and False means don't add the line to IPython's history.
                ip.runsource = lambda src, symbol='exec': \
                               ip.run_cell(src, False)
                mainloop = ip.mainloop

            else:
                if is_wx:
                    mainloop = ip.mainloop
                    is_runsource = False

                else:
                    mainloop = ip.interact

    if is_runsource:
        ip.runsource(_preexec_source, symbol='exec')

    message = _make_message(ipython, quiet, _preexec_source)

    output.set_output(filename=os.path.join(sfepy_config_dir, 'isfepy.log'),
                      combined=silent == False,
                      append=True)
    atexit.register(output, 'isfepy finished\n' + '*' * 55)

    if not in_ipython:
        if is_runsource:
            mainloop(message)

        else:
            mainloop(banner=message)

        sys.exit('Exiting ...')

    else:
        ip.write(message)
        ip.set_hook('shutdown_hook', lambda ip: ip.write('Exiting ...\n'))