def test_term_arithmetics(self): from sfepy.fem import FieldVariable, Integral from sfepy.terms.terms import Term integral = Integral('i', order=3) integral_s = Integral('i', kind='s', order=3) u = FieldVariable('u', 'parameter', self.field, self.dim, primary_var_name='(set-to-None)') t1 = Term.new('d_volume(u)', integral, self.omega, u=u) t2 = Term.new('d_surface(u)', integral_s, self.gamma1, u=u) expr = 2.2j * (t1 * 5.5 - 3j * t2) * 0.25 ok = len(expr) == 2 if not ok: self.report('wrong expression length!') _ok = nm.allclose(expr[0].sign, 3.025j, rtol=1e-15, atol=0) if not _ok: self.report('wrong sign of the first term!') ok = ok and _ok _ok = nm.allclose(expr[1].sign, 1.65, rtol=1e-15, atol=0) if not _ok: self.report('wrong sign of the second term!') ok = ok and _ok return ok
def test_normals(self): """ Check orientations of surface normals on the reference elements. """ import sfepy from sfepy.fem import Mesh, Domain, Integral from sfepy.fem.poly_spaces import PolySpace from sfepy.fem.mappings import SurfaceMapping from sfepy.linalg import normalize_vectors ok = True for geom in ['2_3', '2_4', '3_4', '3_8']: mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom, prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) surface = domain.create_region('Surface', 'vertices of surface', 'facet') domain.create_surface_group(surface) sd = domain.surface_groups[0][surface.name] coors = domain.get_mesh_coors() gel = domain.geom_els[geom].surface_facet ps = PolySpace.any_from_args('aux', gel, 1) mapping = SurfaceMapping(coors, sd.get_connectivity(), ps) integral = Integral('i', order=1) vals, weights = integral.get_qp(gel.name) # Evaluate just in the first quadrature point... geo = mapping.get_mapping(vals[:1], weights[:1]) expected = expected_normals[geom].copy() normalize_vectors(expected) _ok = nm.allclose(expected, geo.normal[:, 0, :, 0], rtol=0.0, atol=1e-14) self.report('%s: %s' % (geom, _ok)) if not _ok: self.report('expected:') self.report(expected) self.report('actual:') self.report(geo.normal[:, 0, :, 0]) ok = ok and _ok return ok
def _get_qp(geometry, order): from sfepy.fem import Integral from sfepy.fem.geometry_element import GeometryElement aux = Integral('aux', order=order) coors, weights = aux.get_qp(geometry) true_order = aux.qps[geometry].order output('geometry:', geometry, 'order:', order, 'num. points:', coors.shape[0], 'true_order:', true_order) output('min. weight:', weights.min()) output('max. weight:', weights.max()) return GeometryElement(geometry), coors, weights
def test_normals(self): """ Check orientations of surface normals on the reference elements. """ import sfepy from sfepy.fem import Mesh, Domain, Integral from sfepy.fem.poly_spaces import PolySpace from sfepy.fem.mappings import SurfaceMapping from sfepy.linalg import normalize_vectors ok = True for geom in ['2_3', '2_4', '3_4', '3_8']: mesh = Mesh.from_file('meshes/elements/%s_1.mesh' % geom, prefix_dir=sfepy.data_dir) domain = Domain('domain', mesh) surface = domain.create_region('Surface', 'nodes of surface') domain.create_surface_group(surface) sd = domain.surface_groups[0][surface.name] coors = domain.get_mesh_coors() gel = domain.geom_els[geom].surface_facet ps = PolySpace.any_from_args('aux', gel, 1) mapping = SurfaceMapping(coors, sd.get_connectivity(), ps) integral = Integral('i', order=1) vals, weights = integral.get_qp(gel.name) # Evaluate just in the first quadrature point... geo = mapping.get_mapping(vals[:1], weights[:1]) expected = expected_normals[geom].copy() normalize_vectors(expected) _ok = nm.allclose(expected, geo.normal[:, 0, :, 0], rtol=0.0, atol=1e-14) self.report('%s: %s' % (geom, _ok)) if not _ok: self.report('expected:') self.report(expected) self.report('actual:') self.report(geo.normal[:, 0, :, 0]) ok = ok and _ok return ok
def test_term_evaluation(self): from sfepy.fem import Integral, FieldVariable from sfepy.terms.terms import Term integral = Integral('i', order=3) u = FieldVariable('u', 'parameter', self.field, self.dim, primary_var_name='(set-to-None)') term = Term.new('d_volume(u)', integral, self.omega, u=u) term *= 10.0 term.setup() vol = term.evaluate() self.report('volume: %.8f == 2000.0' % vol) ok = nm.allclose(vol, 2000.0, rtol=1e-15, atol=0) ## vec = t1.evaluate() # Returns vector. ## vec = t1.evaluate(u=u_vec) # Returns the same vector. ## mtx = t1.evaluate(diff_var='u') # Returns matrix. ## val = t1.evaluate(v=u_vec, u=u_vec) # Forbidden - virtual variable ## # cannot have value. return ok
def test_solving(self): from sfepy.base.base import IndexedStruct from sfepy.fem \ import FieldVariable, Material, ProblemDefinition, \ Function, Equation, Equations, Integral from sfepy.fem.conditions import Conditions, EssentialBC from sfepy.terms import Term from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton u = FieldVariable('u', 'unknown', self.field, self.dim) v = FieldVariable('v', 'test', self.field, self.dim, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) f = Material('f', val=[[0.02], [0.01]]) bc_fun = Function('fix_u_fun', fix_u_fun, extra_args={'extra_arg' : 'hello'}) fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun}) shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1}) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, self.omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls) ## pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) state = pb.solve() name = op.join(self.options.out_dir, 'test_high_level_solving.vtk') pb.save_state(name, state) ok = nls_status.condition == 0 if not ok: self.report('solver did not converge!') _ok = state.has_ebc() if not _ok: self.report('EBCs violated!') ok = ok and _ok return ok
def _integrate(var, val_qp): from sfepy.fem import Integral from sfepy.fem.mappings import get_jacobian integral = Integral('i', 2) det = get_jacobian(var.field, integral) val = (val_qp * det).sum(axis=1) / det.sum(axis=1) return val
def make_h1_projection_data(target, eval_data): """ Project scalar data given by a material-like `eval_data()` function to a scalar `target` field variable using the :math:`H^1` dot product. """ order = target.field.approx_order * 2 integral = Integral('i', order=order) un = target.name v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un) lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral, target.field.region, v=v, **{un: target}) lhs2 = Term.new('dw_laplace(v, %s)' % un, integral, target.field.region, v=v, **{un: target}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': val = eval_data(ts, coors, mode, 'val', **kwargs) gval = eval_data(ts, coors, mode, 'grad', **kwargs) return {'val': val, 'gval': gval} m = Material('m', function=_eval_data) rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region, m=m, v=v) rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region, m=m, v=v) eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the target variable with the projection solution. pb.solve() if nls_status.condition != 0: output('H1 projection: solver did not converge!')
def from_conf(conf, options): from sfepy.fem import Mesh, Domain, Integral domains = [] for filename in filename_meshes: mesh = Mesh.from_file(filename) domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''), mesh) domain.create_region('Omega', 'all') domain.create_region('Gamma', 'nodes of surface') domains.append(domain) integrals = {'Omega' : Integral('iv', kind='v', order=3), 'Gamma' : Integral('is', kind='s', order=3)} test = Test(domains=domains, integrals=integrals, conf=conf, options=options) return test
def test_invariance_qp(self): from sfepy import data_dir from sfepy.fem import (Mesh, Domain, H1NodalVolumeField, Variables, Integral) from sfepy.terms import Term from sfepy.fem.mappings import get_physical_qps mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') bbox = mesh.get_bounding_box() dd = bbox[1, :] - bbox[0, :] data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1]) variables = { 'u': ('unknown field', 'scalar_tp', 0), 'v': ('test field', 'scalar_tp', 'u'), } domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = H1NodalVolumeField('scalar_tp', nm.float64, 1, omega, approx_order=1) ff = {field.name: field} vv = Variables.from_conf(transform_variables(variables), ff) u = vv['u'] u.set_from_mesh_vertices(data) integral = Integral('i', order=2) term = Term.new('ev_volume_integrate(u)', integral, omega, u=u) term.setup() val1, _ = term.evaluate(mode='qp') val1 = val1.ravel() qps = get_physical_qps(omega, integral) coors = qps.get_merged_values() val2 = u.evaluate_at(coors).ravel() self.report('max. difference:', nm.abs(val1 - val2).max()) ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report('invariance in qp: %s' % ok) return ok
def from_conf(conf, options): from sfepy.fem import Mesh, Domain, Integral domains = [] for filename in filename_meshes: mesh = Mesh.from_file(filename) domain = Domain('domain_%s' % mesh.name.replace(data_dir, ''), mesh) domain.create_region('Omega', 'all') domain.create_region('Gamma', 'vertices of surface', 'facet') domains.append(domain) integral = Integral('i', order=3) test = Test(domains=domains, integral=integral, conf=conf, options=options) return test
def create_mass_matrix(field): """ Create scalar mass matrix corresponding to the given field. Returns ------- mtx : csr_matrix The mass matrix in CSR format. """ u = FieldVariable('u', 'unknown', field, 1) v = FieldVariable('v', 'test', field, 1, primary_var_name='u') integral = Integral('i', order=field.approx_order * 2) term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u) eq = Equation('aux', term) eqs = Equations([eq]) eqs.time_update(None) dummy = eqs.create_state_vector() mtx = eqs.create_matrix_graph() mtx = eqs.eval_tangent_matrices(dummy, mtx) return mtx
def main(): parser = OptionParser(usage=usage, version="%prog") parser.add_option( "-b", "--basis", metavar="name", action="store", dest="basis", default="lagrange", help=help["basis"] ) parser.add_option( "-n", "--max-order", metavar="order", type=int, action="store", dest="max_order", default=10, help=help["max_order"], ) parser.add_option( "-m", "--matrix", metavar="type", action="store", dest="matrix_type", default="laplace", help=help["matrix_type"], ) parser.add_option( "-g", "--geometry", metavar="name", action="store", dest="geometry", default="2_4", help=help["geometry"] ) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output("reference element geometry:") output(" dimension: %d, vertices: %d" % (dim, n_ep)) n_c = {"laplace": 1, "elasticity": dim}[options.matrix_type] output("matrix type:", options.matrix_type) output("number of variable components:", n_c) output("polynomial space:", options.basis) output("max. order:", options.max_order) mesh = Mesh.from_file(data_dir + "/meshes/elements/%s_1.mesh" % options.geometry) domain = Domain("domain", mesh) omega = domain.create_region("Omega", "all") orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ["2_4", "3_8"] else 1 for order in orders: output("order:", order, "...") field = Field.from_args( "fu", nm.float64, n_c, omega, approx_order=order, space="H1", poly_space_base=options.basis ) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output("quadrature order:", quad_order) integral = Integral("i", order=quad_order) qp, _ = integral.get_qp(options.geometry) output("number of quadrature points:", qp.shape[0]) u = FieldVariable("u", "unknown", field, n_c) v = FieldVariable("v", "test", field, n_c, primary_var_name="u") m = Material("m", lam=1.0, mu=1.0) if options.matrix_type == "laplace": term = Term.new("dw_laplace(m.mu, v, u)", integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == "elasticity") term = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output("assembling...") tt = time.clock() mtx, iels = term.evaluate(mode="weak", diff_var="u") output("...done in %.2f s" % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output("matrix shape:", mtx.shape) eigs = eig(mtx, method="eig.sgscipy", eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output("matrix is not positive semi-definite!") ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output("matrix has more than %d zero eigenvalues!" % n_zero) output("smallest eigs:\n", eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output("min:", emin, "max:", emax) cond = emax / emin conds.append(cond) output("condition number:", cond) output("...done") plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel("polynomial order") plt.ylabel("condition number") plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel("polynomial order") plt.ylabel("condition number") plt.grid() plt.show()
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = Domain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'nodes in x < %.10f' % (min_x + eps)) gamma2 = domain.create_region('Gamma2', 'nodes in x > %.10f' % (max_x - eps)) field = H1NodalVolumeField('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field, mesh.dim) v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def _gen_common_data(order, gels, report): import sfepy from sfepy.base.base import Struct from sfepy.linalg import combine from sfepy.fem import Mesh, Domain, Field, FieldVariable, Integral from sfepy.fem.global_interp import get_ref_coors integral = Integral('i', order=order) for geom, poly_space_base in combine([['2_4', '3_8'], ['lagrange', 'lobatto']]): report('geometry: %s, base: %s' % (geom, poly_space_base)) mesh0 = Mesh.from_file('meshes/elements/%s_2.mesh' % geom, prefix_dir=sfepy.data_dir) gel = gels[geom] perms = gel.get_conn_permutations() qps, qp_weights = integral.get_qp(gel.surface_facet.name) zz = nm.zeros_like(qps[:, :1]) qps = nm.hstack(([qps] + [zz])) rot = rots[geom] if rot is not None: pass shift = shifts[geom] rcoors = nm.ascontiguousarray(qps + shift[:1, :] - shift[1:, :]) ccoors = nm.ascontiguousarray(qps + shift[:1, :] + shift[1:, :]) for ir, pr in enumerate(perms): for ic, pc in enumerate(perms): report('ir: %d, ic: %d' % (ir, ic)) mesh = mesh0.copy() conn = mesh.conns[0] conn[0, :] = conn[0, pr] conn[1, :] = conn[1, pc] cache = Struct(mesh=mesh) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') region = domain.create_region('Facet', rsels[geom]) field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=order, poly_space_base=poly_space_base) var = FieldVariable('u', 'unknown', field, 1) report('# dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) ap = field.aps[0] ps = ap.interp.poly_spaces['v'] dofs = field.get_dofs_in_region_group(region, 0, merge=False) edofs, fdofs = nm.unique(dofs[1]), nm.unique(dofs[2]) rrc, rcells, rstatus = get_ref_coors(field, rcoors, cache=cache) crc, ccells, cstatus = get_ref_coors(field, ccoors, cache=cache) yield (geom, poly_space_base, qp_weights, mesh, ir, ic, ap, ps, rrc, crc, vec, edofs, fdofs)
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=help['max_order']) parser.add_option('-m', '--matrix', metavar='type', action='store', dest='matrix_type', default='laplace', help=help['matrix_type']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = {'laplace': 1, 'elasticity': dim}[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1 for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output('quadrature order:', quad_order) integral = Integral('i', order=quad_order) qp, _ = integral.get_qp(options.geometry) output('number of quadrature points:', qp.shape[0]) u = FieldVariable('u', 'unknown', field, n_c) v = FieldVariable('v', 'test', field, n_c, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == 'elasticity') term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output('assembling...') tt = time.clock() mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.show()
def describe_geometry(self, field, gtype, region, integral=None, return_mapping=False): """ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group. - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = field.domain group = domain.groups[self.ig] coors = domain.get_mesh_coors(actual=True) if gtype == 'volume': if integral is None: from sfepy.fem import Integral integral = Integral('i_tmp', 'v', 1) qp = self.get_qp('v', integral) iels = region.cells[self.ig] geo_ps = self.interp.get_geom_poly_space('v') ps = self.interp.poly_spaces['v'] bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(group.conn, iels, axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori) out = vg elif (gtype == 'surface') or (gtype == 'surface_extra'): assert_(field.approx_order > 0) if self.ori is not None: msg = 'surface integrals do not work yet with the' \ ' hierarchical basis!' raise ValueError(msg) sd = domain.surface_groups[self.ig][region.name] esd = self.surface_data[region.name] qp = self.get_qp(sd.face_type, integral) geo_ps = self.interp.get_geom_poly_space(sd.face_type) ps = self.interp.poly_spaces[esd.face_type] bf = self.get_base(esd.face_type, 0, integral) conn = sd.get_connectivity() mapping = SurfaceMapping(coors, conn, poly_space=geo_ps) sg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps) if gtype == 'surface_extra': sg.alloc_extra_data(self.get_v_data_shape()[2]) self.create_bqp(region.name, integral) qp = self.qp_coors[(integral.name, esd.bkey)] v_geo_ps = self.interp.get_geom_poly_space('v') bf_bg = v_geo_ps.eval_base(qp.vals, diff=True) ebf_bg = self.get_base(esd.bkey, 1, integral) sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, group.conn) out = sg elif gtype == 'point': out = mapping = None else: raise ValueError('unknown geometry type: %s' % gtype) if out is not None: # Store the integral used. out.integral = integral out.qp = qp out.ps = ps # Update base. out.bf[:] = bf if return_mapping: out = (out, mapping) return out
def _gen_common_data(orders, gels, report): import sfepy from sfepy.base.base import Struct from sfepy.linalg import combine from sfepy.fem import Mesh, Domain, Field, FieldVariable, Integral from sfepy.fem.global_interp import get_ref_coors bases = ([ii for ii in combine([['2_4', '3_8'], ['lagrange', 'lobatto']])] + [ii for ii in combine([['2_3', '3_4'], ['lagrange']])]) for geom, poly_space_base in bases: report('geometry: %s, base: %s' % (geom, poly_space_base)) order = orders[geom] integral = Integral('i', order=order) aux = '' if geom in ['2_4', '3_8'] else 'z' mesh0 = Mesh.from_file('meshes/elements/%s_2%s.mesh' % (geom, aux), prefix_dir=sfepy.data_dir) gel = gels[geom] perms = gel.get_conn_permutations() qps, qp_weights = integral.get_qp(gel.surface_facet.name) zz = nm.zeros_like(qps[:, :1]) qps = nm.hstack(([qps] + [zz])) shift = shifts[geom] rcoors = nm.ascontiguousarray(qps + shift[:1, :] - shift[1:, :]) ccoors = nm.ascontiguousarray(qps + shift[:1, :] + shift[1:, :]) for ir, pr in enumerate(perms): for ic, pc in enumerate(perms): report('ir: %d, ic: %d' % (ir, ic)) report('pr: %s, pc: %s' % (pr, pc)) mesh = mesh0.copy() conn = mesh.conns[0] conn[0, :] = conn[0, pr] conn[1, :] = conn[1, pc] cache = Struct(mesh=mesh) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') region = domain.create_region('Facet', rsels[geom], 'facet') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=order, poly_space_base=poly_space_base) var = FieldVariable('u', 'unknown', field, 1) report('# dofs: %d' % var.n_dof) vec = nm.empty(var.n_dof, dtype=var.dtype) ap = field.aps[0] ps = ap.interp.poly_spaces['v'] dofs = field.get_dofs_in_region_group(region, 0, merge=False) edofs, fdofs = nm.unique(dofs[1]), nm.unique(dofs[2]) rrc, rcells, rstatus = get_ref_coors(field, rcoors, cache=cache) crc, ccells, cstatus = get_ref_coors(field, ccoors, cache=cache) assert_((rstatus == 0).all() and (cstatus == 0).all()) yield (geom, poly_space_base, qp_weights, mesh, ir, ic, ap, ps, rrc, rcells[0, 1], crc, ccells[0, 1], vec, edofs, fdofs)
def eval_in_els_and_qp(expression, ig, iels, coors, fields, materials, variables, functions=None, mode='eval', term_mode=None, extra_args=None, verbose=True, kwargs=None): """ Evaluate an expression in given elements and points. Parameters ---------- expression : str The expression to evaluate. fields : dict The dictionary of fields used in `variables`. materials : Materials instance The materials used in the expression. variables : Variables instance The variables used in the expression. functions : Functions instance, optional The user functions for materials etc. mode : one of 'eval', 'el_avg', 'qp' The evaluation mode - 'qp' requests the values in quadrature points, 'el_avg' element averages and 'eval' means integration over each term region. term_mode : str The term call mode - some terms support different call modes and depending on the call mode different values are returned. extra_args : dict, optional Extra arguments to be passed to terms in the expression. verbose : bool If False, reduce verbosity. kwargs : dict, optional The variables (dictionary of (variable name) : (Variable instance)) to be used in the expression. Returns ------- out : array The result of the evaluation. """ weights = nm.ones_like(coors[:, 0]) integral = Integral('ie', coors=coors, weights=weights) domain = fields.values()[0].domain region = Region('Elements', 'given elements', domain, '') region.cells = iels + domain.mesh.el_offsets[ig] region.update_shape() domain.regions.append(region) for field in fields.itervalues(): field.clear_mappings(clear_all=True) for ap in field.aps.itervalues(): ap.clear_qp_base() aux = create_evaluable(expression, fields, materials, variables.itervalues(), Integrals([integral]), functions=functions, mode=mode, extra_args=extra_args, verbose=verbose, kwargs=kwargs) equations, variables = aux out = eval_equations(equations, variables, preserve_caches=False, mode=mode, term_mode=term_mode) domain.regions.pop() return out
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=help['max_order']) parser.add_option('-m', '--matrix', metavar='type', action='store', dest='matrix_type', default='laplace', help=help['matrix_type']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = {'laplace' : 1, 'elasticity' : dim}[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1 for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output('quadrature order:', quad_order) integral = Integral('i', order=quad_order) qp, _ = integral.get_qp(options.geometry) output('number of quadrature points:', qp.shape[0]) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == 'elasticity') term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output('assembling...') tt = time.clock() mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug; debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.show()