Beispiel #1
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.fem \
             import FieldVariable, Material, ProblemDefinition, \
                    Function, Equation, Equations, Integral
        from sfepy.fem.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton

        u = FieldVariable('u', 'unknown', self.field, self.dim)
        v = FieldVariable('v', 'test', self.field, self.dim,
                          primary_var_name='u')

        m = Material('m', lam=1.0, mu=1.0)
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun', fix_u_fun,
                          extra_args={'extra_arg' : 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, self.omega, m=m, v=v, u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
        ## pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=Conditions([fix_u, shift_u]))

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
Beispiel #2
0
    def test_solving(self):
        from sfepy.base.base import IndexedStruct
        from sfepy.fem \
             import FieldVariable, Material, ProblemDefinition, \
                    Function, Equation, Equations, Integral
        from sfepy.fem.conditions import Conditions, EssentialBC
        from sfepy.terms import Term
        from sfepy.solvers.ls import ScipyDirect
        from sfepy.solvers.nls import Newton

        u = FieldVariable('u', 'unknown', self.field, self.dim)
        v = FieldVariable('v', 'test', self.field, self.dim,
                          primary_var_name='u')

        m = Material('m', lam=1.0, mu=1.0)
        f = Material('f', val=[[0.02], [0.01]])

        bc_fun = Function('fix_u_fun', fix_u_fun,
                          extra_args={'extra_arg' : 'hello'})

        fix_u = EssentialBC('fix_u', self.gamma1, {'u.all' : bc_fun})
        shift_u = EssentialBC('shift_u', self.gamma2, {'u.0' : 0.1})

        integral = Integral('i', order=3)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, self.omega, m=m, v=v, u=u)

        t2 = Term.new('dw_volume_lvf(f.val, v)', integral, self.omega, f=f, v=v)

        eq = Equation('balance', t1 + t2)
        eqs = Equations([eq])

        ls = ScipyDirect({})

        nls_status = IndexedStruct()
        nls = Newton({}, lin_solver=ls, status=nls_status)

        pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
        ## pb.save_regions_as_groups('regions')

        pb.time_update(ebcs=Conditions([fix_u, shift_u]))

        state = pb.solve()

        name = op.join(self.options.out_dir, 'test_high_level_solving.vtk')
        pb.save_state(name, state)

        ok = nls_status.condition == 0
        if not ok:
            self.report('solver did not converge!')

        _ok = state.has_ebc()
        if not _ok:
            self.report('EBCs violated!')

        ok = ok and _ok

        return ok
Beispiel #3
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val': val, 'gval': gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
    domain = Domain("domain", mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region("Omega", "all")
    gamma1 = domain.create_region("Gamma1", "nodes in x < %.10f" % (min_x + eps))
    gamma2 = domain.create_region("Gamma2", "nodes in x > %.10f" % (max_x - eps))

    field = Field("fu", nm.float64, "vector", omega, space="H1", poly_space_base="lagrange", approx_order=2)

    u = FieldVariable("u", "unknown", field, mesh.dim)
    v = FieldVariable("v", "test", field, mesh.dim, primary_var_name="u")

    m = Material("m", lam=1.0, mu=1.0)
    f = Material("f", val=[[0.02], [0.01]])

    integral = Integral("i", order=3)

    t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
    t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
    eq = Equation("balance", t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})

    bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
    shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition("elasticity", equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups("regions")

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state("linear_elasticity.vtk", vec)

    if options.show:
        view = Viewer("linear_elasticity.vtk")
        view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
Beispiel #5
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val' : val, 'gval' : gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
                    m=m, v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region,
                    m=m, v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
Beispiel #6
0
def make_l2_projection(target, source):
    """
    Project `source` field variable to `target` field variable using
    :math:`L^2` dot product.
    """
    order = target.field.get_true_order()**2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
    lhs = Term.new('dw_mass_scalar(v, %s)' % un, integral,
                   target.field.region, v=v, **{un : target})

    def eval_variable(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = source.evaluate_at(coors)
            val.shape = val.shape + (1,)
            out = {'val' : val}
            return out

    m = Material('m', function=eval_variable)
    rhs = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
                   m=m, v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
Beispiel #7
0
def make_l2_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`L^2` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral("i", order=order)

    un = target.name
    v = FieldVariable("v", "test", target.field, primary_var_name=un)
    lhs = Term.new("dw_volume_dot(v, %s)" % un, integral, target.field.region, v=v, **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == "qp":
            val = eval_data(ts, coors, mode, **kwargs)
            return {"val": val}

    m = Material("m", function=_eval_data)
    rhs = Term.new("dw_volume_lvf(m.val, v)", integral, target.field.region, m=m, v=v)

    eq = Equation("projection", lhs - rhs)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition("aux", equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output("L2 projection: solver did not converge!")
term = Term.new('dw_laplace(s, t)', integral, omega,
                s=s, t=t)
eq = Equation('temperature', term)
eqs = Equations([eq])

t_left = EssentialBC('t_left',
                     left, {'t.0' : 10.0})
t_right = EssentialBC('t_right',
                      right, {'t.0' : 30.0})

ls = ScipyDirect({})
nls = Newton({}, lin_solver=ls)

pb = ProblemDefinition('temperature', equations=eqs,
                       nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([t_left, t_right]))

temperature = pb.solve()
out = temperature.create_output_dict()

field_u = Field.from_args('displacement', np.float64,
                          'vector', omega, 1)
u = FieldVariable('u', 'unknown', field_u, mesh.dim)
v = FieldVariable('v', 'test', field_u, mesh.dim,
                  primary_var_name='u')

lam = 10.0 # Lame parameters.
mu = 5.0
te = 0.5 # Thermal expansion coefficient.
T0 = 20.0 # Background temperature.
eye_sym = np.array([[1], [1], [0]],
Beispiel #9
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = H1NodalVolumeField('fu',
                               nm.float64,
                               'vector',
                               omega,
                               approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                  integral,
                  omega,
                  m=m,
                  v=v,
                  u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = Field('fu', nm.float64, 'vector', omega,
                  space='H1', poly_space_base='lagrange', approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
         integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm', rel_scaling=2,
             is_scalar_bar=True, is_wireframe=True)