Beispiel #1
0
 def run(self):
     input_path = os.path.join(self.datapath, "input", self.input_dataset,
                               "images", self.filename + ".tif")
     gdal_translate_args = [
         '-srcwin', self.min_x, self.min_y, self.tile_width,
         self.tile_height, input_path,
         self.output().path
     ]
     sh.gdal_translate(gdal_translate_args)
    def gif2tif(self, start, end):
        """
        Convert `prediction output`_ from GIF to TIFF.

        Will use extent.json and gdal_translate to recover geospatial
        information lost to GIF format.

        Parameters:

        - `start`: beginning of prediction range.
        - `end`: ending of prediction range, inclusive.

        Start and end parameters are necessary to figure out paths.

        .. _`prediction output`: http://www.ncgia.ucsb.edu/projects/gig/About/dtImOut.htm
        """
        predict_dir = join(self.output_path, 'predict')
        with open(join(self.input_path, 'extent.json')) as extent_file:
            extent = json.load(extent_file)
            columnas = str(int(extent["columns"]) - 1)
            renglones = str(int(extent["rows"]) - 1)
            epsg = 'EPSG:' + extent["epsg"]
            xmin = str(extent["xmin"])
            xmax = str(extent["xmax"])
            ymin = str(extent["ymin"])
            ymax = str(extent["ymax"])

            self.save_status('gif2tif')
        for year in range(start + 1, end + 1):
            gif = join(predict_dir, "%s_urban_%s.gif" % (self.location, year))
            tmp_tif = join(predict_dir,
                           "%s_urban_%s_tmp.tif" % (self.location, year))
            tmp_xml = join(
                predict_dir,
                "%s_urban_%s_tmp.tif.aux.xml" % (self.location, year))
            tif = join(predict_dir, "%s_urban_%s.tif" % (self.location, year))

            gdal_translate('-a_srs', epsg, '-ot', 'Float64', '-of', 'GTiff',
                           '-gcp', '0', renglones, xmin, ymin, '-gcp',
                           columnas, renglones, xmax, ymin, '-gcp', columnas,
                           '0', xmax, ymax, '-gcp', '0', '0', xmin, ymax, gif,
                           tmp_tif)

            otbcli_BandMath('-il', tmp_tif, '-out', tif, '-exp',
                            'im1b1 < 9 ? im1b1 : 0')
            try:
                os.remove(tmp_tif)
                os.remove(tmp_xml)
            except:
                pass
Beispiel #3
0
    def process_layer(self, typename):
	fname_in = '%s.shp' % typename
	fname_out = '%s_rasterized.tiff' % typename
	pwd = str(sh.pwd()).strip()
        try:
            sh.cd('/tmp/layer')
            sh.rm("-rf",sh.glob('*'))
            sh.unzip('../layer.zip')
	    saga_cmd.shapes_points("Points Filter", POINTS=fname_in, FIELD="MASA_HUMEDO", FILTER="tmp1.shp", RADIUS=100, MINNUM=25, MAXNUM=200, METHOD=4, PERCENT=15)
	    saga_cmd.shapes_points("Points Filter", POINTS="tmp1.shp", FIELD="MASA_HUMEDO", FILTER="tmp2.shp", RADIUS=100, MINNUM=25, MAXNUM=200, METHOD=5, PERCENT=90)
    	    saga_cmd.grid_gridding("Shapes to Grid", INPUT="tmp2.shp", FIELD="MASA_HUMEDO", MULTIPLE=4, LINE_TYPE=0, GRID_TYPE=3, USER_SIZE=0.0001, TARGET=0, USER_GRID="tmp3.sgrd")
	    saga_cmd.grid_tools("Close Gaps", INPUT="tmp3.sgrd", RESULT="tmp4.sgrd")
	    saga_cmd.shapes_points("Convex Hull", SHAPES="tmp2.shp", HULLS="tmphull.shp", POLYPOINTS=0)
	    saga_cmd.shapes_grid("Clip Grid with Polygon", INPUT="tmp4.sgrd", OUTPUT="tmp5.sgrd", POLYGONS="tmphull.shp")
	    saga_cmd.grid_filter("Gaussian Filter", INPUT="tmp5.sgrd", RESULT="tmp6", SIGMA=3, MODE=1, RADIUS=50)

	    sh.gdal_translate("-of", "gtiff", "tmp6.sdat", fname_out)
        finally:
	    sh.cd(pwd)
	return '/tmp/layer/%s' % fname_out
Beispiel #4
0
def downsample(input: Path, factor: int, anti_alias: bool):
    # Fail early if h5repack cli command is not available.
    from sh import h5repack, gdal_translate

    granule_name = find_a_granule_name(input)
    fmask_image = input.with_name(f"{granule_name}.fmask.img")

    nbar_size = None
    with h5py.File(input) as f:
        image_paths = find_h5_paths(f, "IMAGE")

        for i, image_path in enumerate(image_paths):
            old_image: Optional[h5py.Dataset] = f[image_path]

            def info(msg: str):
                secho(
                    f"{i: 4}/{len(image_paths)} {style(repr(image_path), fg='blue')}: {msg}"
                )

            old_shape = old_image.shape
            if all(dim_size < factor for dim_size in old_shape):
                info(f"Skipping")
                continue

            attrs = dict(old_image.attrs.items())
            old_geotransform = attrs["geotransform"]

            new_data = old_image[()][::factor, ::factor]
            new_shape = new_data.shape
            info(f"New shape: {new_shape!r}")
            del old_image
            del f[str(image_path)]

            folder, name = image_path.rsplit("/", 1)
            parent: h5py.Group = f[str(folder)]

            image = parent.create_dataset(name, new_shape, data=new_data)
            new_geotransform = list(old_geotransform)
            new_geotransform[1] *= old_shape[1] / new_shape[1]
            new_geotransform[5] *= old_shape[0] / new_shape[0]
            attrs["geotransform"] = new_geotransform
            image.attrs.update(attrs)

            # Update any res group with the new resolution.
            res_group_path = _get_res_group_path(image_path)
            if res_group_path:
                res_group = f[res_group_path]
                res_group.attrs["resolution"] = [
                    abs(new_geotransform[5]),
                    abs(new_geotransform[1]),
                ]

            if "/NBAR/" in image_path:
                nbar_size = new_shape

    if nbar_size is None:
        raise ValueError("No nbar image found?")

    # We need to repack the file to actually free up the space.
    repacked = input.with_suffix(".repacked.h5")
    h5repack("-f", "GZIP=5", input, repacked)
    repacked.rename(input)

    if fmask_image.exists():
        secho(f"Scaling fmask {fmask_image}")
        tmp = fmask_image.with_suffix(f".tmp.{fmask_image.suffix}")
        gdal_translate("-outsize", nbar_size[1], nbar_size[0], fmask_image,
                       tmp)
        tmp.rename(fmask_image)