Beispiel #1
0
    def test_query_entities_when_partition_key_invalid(self):
        
        # Expecting result to be empty when partition key is invalid
        result = storage_helpers.query_entities(
                self.table_service, 
                self.table_status,
                "abcd")

        assert len(result) == 0
Beispiel #2
0
    def test_query_entities_when_table_invalid(self):
        
        # Expecting failure when table is invalid
        result = storage_helpers.query_entities(
                self.table_service, 
                "abcd",
                self.label)

        assert result == None
Beispiel #3
0
    def test_query_entities_when_valid(self):
        
        # Expecting success when all parameters are valid
        result = storage_helpers.query_entities(
                self.table_service, 
                self.table_status,
                self.label)

        assert result != None
Beispiel #4
0
    def test_create_table_service_when_key_invalid(self):
    
        # Expecting failure when storage account key is invalid
        table_service = storage_helpers.create_table_service(
                self.storage_account,
                "abcd")

        result = storage_helpers.query_entities(table_service, self.table, self.label)

        assert result == None
Beispiel #5
0
    def test_create_table_service_when_account_invalid(self):
    
        # Expecting failure when storage account name is invalid
        table_service = storage_helpers.create_table_service(
                "aezaehzajebvheahez",
                self.storage_key)

        result = storage_helpers.query_entities(table_service, self.table, self.label)

        assert result == None
Beispiel #6
0
    def test_create_table_service_when_valid(self):
    
        # Expecting success when all parameters are valid
        table_service = storage_helpers.create_table_service(
                self.storage_account,
                self.storage_key)

        result = storage_helpers.query_entities(table_service, self.table, self.label)

        assert result != None
Beispiel #7
0
    def run(self, doctype, train_supervised, train_unsupervised):

        logging.info(
            f"Training will start. Training supervised: {train_supervised}, Training unsupervised:  {train_unsupervised}"
        )

        training_data_path = self.get_training_data_path()
        result_supervised = None
        result_unsupervised = None

        if train_unsupervised == 'True':
            # Training unsupervised
            result_unsupervised = self.train_and_save(doctype,
                                                      training_data_path,
                                                      False)

        entities_status = storage_helpers.query_entities(
            self.table_service, self.app_settings.status_table, doctype)

        # If all files are processed, we can train the model
        if self.files_processed(entities_status):
            logging.info(
                f"All files processed for doc type {doctype}, supervised training will start..."
            )

            if train_supervised == 'True':
                # Training supervised
                result_supervised = self.train_and_save(
                    doctype, training_data_path, True)

            if result_supervised != None and result_unsupervised != None:

                return True, {
                    "text": "Training finished.",
                    "modelId_supervised": result_supervised['model_id'],
                    "status_supervised": result_supervised['status'],
                    "avgAccuracy": result_supervised['accuracy'],
                    "fieldsAccuracy": result_supervised['fields_accuracy'],
                    "modelId_unsupervised": result_unsupervised['model_id'],
                    "status_unsupervised": result_unsupervised['status']
                }

            elif result_supervised != None and result_unsupervised == None:

                return True, {
                    "text":
                    "Training supervised finished, training unsupervised failed.",
                    "modelId_supervised": result_supervised['model_id'],
                    "status": result_supervised['status'],
                    "avgAccuracy": result_supervised['accuracy'],
                    "fieldsAccuracy": result_supervised['fields_accuracy']
                }

            elif result_supervised == None and result_unsupervised != None:

                return True, {
                    "text":
                    "Training unsupervised finished, training supervised failed.",
                    "modelId_unsupervised": result_unsupervised['model_id'],
                    "status_unsupervised": result_unsupervised['status']
                }

            else:
                raise EnvironmentError("Error during training.")

        else:
            logging.info(
                f"Not all files are done processing for doc type {doctype}.")
            raise Warning(
                f"Processing not finished ({str(entities_status.count('done'))}/{str(len(entities_status))} files processed). \n Please retry later.",
            )