def step1_potency(conf):

    prctileVec1 = np.array([35, 35, 35, 35, 35])
    prctileVec2 = np.array([70, 70, 70, 70, 70])
    categories = np.array([1, 2, 3])

    #convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)
    rad = conf.radStep1
    nPrec = conf.nPrec
    rf = conf.rf
    flagRegioMat = np.copy(conf.flagRegioMat)

    #pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    #convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)

    #initialize variables
    omega = np.full([ny, nx, nPrec], np.nan)
    alpha = np.full([ny, nx, nPrec], np.nan)
    ci2 = np.empty((categories.size, nPrec), dtype=object)
    CovB2 = np.empty((categories.size, nPrec), dtype=object)
    alphaTmp = np.zeros((categories.size))
    omegaTmp = np.zeros((categories.size))

    #define training scenarios; note scenarios number is +1 if checking DoE...as in line 74 it is -1
    if conf.domain == 'emep10km':
        if conf.aqi == 'SURF_ug_PM25_rh50-Yea':
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 5]), np.array([1, 6]))
        elif conf.aqi == 'SURF_ug_PM10_rh50-Yea':
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 4]), np.array([1, 6]))
    elif conf.domain == 'ineris7km':
        IdeVec = (np.array([1, 8]), np.array([1, 9]), np.array([1, 10]),
                  np.array([1, 11]), np.array([1, 12]))

    #loop over precursors
    for precursor in range(0, nPrec):
        PREC = precursor
        Ide = IdeVec[precursor]
        icel = 0

        #intialize variables
        PrecPatch = np.zeros((nx * ny, (rad * 2 + 1)**2))
        IndicEq = np.zeros((nx * ny, 1))
        indexUsed = np.full((nx * ny, 1), np.nan)
        #np.zeros((nx*ny,1));
        potency = np.full((ny, nx), np.nan)
        #np.zeros((ny,nx));
        print('precursor: ' + str(PREC))

        #loop over cells to create groups
        for ic in range(0, nx):
            #print(PREC, ic);
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #create data for omega calculation
                    nSc = Ide.shape[0] - 1
                    # size(Ide,2)-1
                    tmpPrec = ep.EquaPrec(ic, ir, rf, nx, ny, nSc,
                                          Prec.shape[3], Prec[:, :, Ide[1],
                                                              PREC], rad)
                    # patches
                    tmpInde = ei.EquaIndic(ic, ir, rf, nx, ny, nSc,
                                           Indic[:, :, Ide[1]])
                    # indicator

                    x0 = np.array([1, 2])
                    [inp2_aggemi] = inv.InvDistN_opt_prec(x0, tmpPrec, rad)
                    #store data for omega calculation
                    potency[ir, ic] = tmpInde / inp2_aggemi

        prc1 = np.percentile(potency[np.isfinite(potency)],
                             prctileVec1[precursor])
        prc9 = np.percentile(potency[np.isfinite(potency)],
                             prctileVec2[precursor])
        speed = potency.copy()
        speed[np.isnan(speed)] = 0
        potency[speed < prc1] = 1
        potency[(speed >= prc1) & (speed < prc9)] = 2
        potency[speed >= prc9] = 3
        val = categories

        for ic in range(0, nx):
            #print(PREC, ic);
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #variable to store which group ot be considered
                    indexUsed[icel] = np.where(val == potency[ir, ic])

                    #create data for omega calculation
                    nSc = Ide.shape[0] - 1
                    # size(Ide,2)-1
                    tmpPrec = ep.EquaPrec(ic, ir, rf, nx, ny, nSc,
                                          Prec.shape[3], Prec[:, :, Ide[1],
                                                              PREC], rad)
                    # patches
                    tmpInde = ei.EquaIndic(ic, ir, rf, nx, ny, nSc,
                                           Indic[:, :, Ide[1]])
                    # indicator

                    #store data for omega calculation
                    PrecPatch[icel, :] = tmpPrec
                    #np.squeeze(tmpPrec)
                    IndicEq[icel] = tmpInde
                    icel = icel + 1

        indexUsedLin = np.reshape(indexUsed, -1, order='F')

        #compute omega for each group of cells, given precursor p
        for i in range(val.size):
            x0 = [1, 2]
            ind = np.where(indexUsedLin == i)[0]

            inp1 = PrecPatch[ind, :]
            inp2 = IndicEq[ind]

            iop = lambda inp1, beta1, beta2: inv.InvDistN_opt_prec(
                [beta1, beta2], inp1, rad)

            [mdl, r, J, CovB] = nlin.nlinfit(iop, inp1, inp2.ravel(), x0)

            ci2[i, PREC] = nlpa.nlparci(r, J)
            CovB2[i, PREC] = CovB
            alphaTmp[i] = mdl[0]
            omegaTmp[i] = mdl[1]

        #repeat result for each belonging to a given group
        for ic in range(0, nx):
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    indexUsed = np.where(val == potency[ir, ic])[0]
                    alpha[ir, ic, PREC] = alphaTmp[indexUsed]
                    omega[ir, ic, PREC] = omegaTmp[indexUsed]

        del (PrecPatch, IndicEq, indexUsed, potency, speed)

    #rescale to initial spatial resolution, through nearest interpolation
    #initialize variable
    omegaFinal = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))
    #loop on precursors
    for i in range(0, nPrec):
        #define interpolator object
        xgv = np.arange(1., conf.Prec.shape[0] / 4 + 1)
        ygv = np.arange(1., conf.Prec.shape[1] / 4 + 1)
        F = interpol.RegularGridInterpolator((xgv, ygv),
                                             omega[:, :, i],
                                             method='nearest',
                                             bounds_error=False,
                                             fill_value=None)

        #interpolate
        Xq = np.arange(1., conf.Prec.shape[0] / 4 + 1, 1 / 4)
        Yq = np.arange(1., conf.Prec.shape[1] / 4 + 1, 1 / 4)
        [Y2, X2] = np.meshgrid(Yq, Xq)
        pts = ((X2.flatten(), Y2.flatten()))
        omegaFinal[:, :, i] = F(pts).reshape(conf.Prec.shape[0],
                                             conf.Prec.shape[1])
        print('precursor interpolated: ' + str(i))

    #store final results
    conf.omegaFinalStep1 = omegaFinal
    conf.ci2Step1 = ci2
    conf.CovB2Step1 = CovB2
Beispiel #2
0
def step1_omegaOptimization(conf):

    #convert from 28 to 7 km
    #    Prec = conf.Prec;
    #    ny = conf.ny;
    #    nx = conf.nx;
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)

    rad = conf.radStep1
    nPrec = conf.nPrec
    rf = conf.rf1
    flagRegioMat = np.copy(conf.flagRegioMat)

    #pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    #convert from 28 to 7 km
    #    Indic = conf.Indic;
    #    flagRegioMat = flagRegioMat;
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)
    lat = f7.from7to28(conf.y)

    #initialize variables
    omega = np.full([ny, nx, nPrec], np.nan)
    alpha = np.full([ny, nx, nPrec], np.nan)

    #precomputed vars
    Y, X = np.mgrid[-rad:rad + 1:1, -rad:rad + 1:1]
    distanceMat = 1 / ((1 + (X**2 + Y**2)**(0.5)))
    distanceMat = distanceMat.flatten()

    #define training scenarios; note scenarios number is +1 if checking DoE...as in line 74 it is -1
    if conf.domain == 'emep10km':
        if conf.aqi == 'SURF_ug_PM25_rh50-Yea':
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 5]), np.array([1, 6]))
        elif conf.aqi == 'SURF_ug_PM10_rh50-Yea':
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 4]), np.array([1, 6]))
    elif conf.domain == 'ineris7km':
        IdeVec = (np.array([1, 2]), np.array([1, 3]), np.array([1, 4]),
                  np.array([1, 5]), np.array([1, 6]))
    elif (conf.domain == 'emepV433_camsV221') | (
            conf.domain == 'edgar2015') | (conf.domain == 'emepV434_camsV42'):
        IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                  np.array([1, 4]), np.array([1, 5]))

    for precursor in range(0, nPrec):
        Ide = conf.Ide
        PREC = precursor
        Ide = IdeVec[precursor]

        for ic in range(0, nx):
            print(ic, nx)
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:

                    #                ratio = np.polyval(conf.ratioPoly, conf.y[ir, ic])
                    ratio = np.polyval(conf.ratioPoly, lat[ir, ic])

                    Y, X = np.mgrid[-rad:rad + 1:1, -rad:rad + 1:1]
                    distanceMat = 1 / ((1 + ((X / ratio)**2 + Y**2)**0.5))
                    distanceMat = distanceMat.flatten()

                    #                ratio = np.polyval(conf.ratioPoly, lat[ir, ic])
                    #                Y, X = np.mgrid[-rad:rad + 1:1, -rad:rad + 1:1];
                    #                F = 1 / ((1 + ((X / ratio) ** 2 + Y ** 2) ** 0.5));
                    #
                    #                Y, X = np.mgrid[-rad:rad+1:1, -rad:rad+1:1];
                    #                distanceMat = 1 / ( (1 + (X**2 + Y**2)**(0.5)))
                    #                distanceMat = distanceMat.flatten()

                    x0 = [1, 1, 1, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.5]

                    nSc = Ide.shape[0]  #-1;# size(Ide,2)-1

                    #                t1=t.time();
                    inp0 = ep.EquaPrec(ic, ir, rf, nx, ny, nSc, Prec.shape[3],
                                       Prec[:, :, Ide, 0], rad)
                    # patches
                    inp1 = ep.EquaPrec(ic, ir, rf, nx, ny, nSc, Prec.shape[3],
                                       Prec[:, :, Ide, 1], rad)
                    # patches
                    inp2 = ep.EquaPrec(ic, ir, rf, nx, ny, nSc, Prec.shape[3],
                                       Prec[:, :, Ide, 2], rad)
                    # patches
                    inp3 = ep.EquaPrec(ic, ir, rf, nx, ny, nSc, Prec.shape[3],
                                       Prec[:, :, Ide, 3], rad)
                    # patches
                    inp4 = ep.EquaPrec(ic, ir, rf, nx, ny, nSc, Prec.shape[3],
                                       Prec[:, :, Ide, 4], rad)
                    # patches
                    #                print("1: %s" % (t.time() - t1));

                    #                t1=t.time();
                    out0 = ei.EquaIndic(ic, ir, rf, nx, ny, nSc, Indic[:, :,
                                                                       Ide])
                    # indicator
                    out0 = out0.flatten()
                    #                print("2: %s" % (t.time() - t1));

                    #remove 0 elements
                    idxToRemove = np.where(out0 == 0)
                    out0 = np.delete(out0, idxToRemove)
                    inp0 = np.delete(inp0, idxToRemove, axis=0)
                    inp1 = np.delete(inp1, idxToRemove, axis=0)
                    inp2 = np.delete(inp2, idxToRemove, axis=0)
                    inp3 = np.delete(inp3, idxToRemove, axis=0)
                    inp4 = np.delete(inp4, idxToRemove, axis=0)

                    bnds1 = tuple((0, 5) for n in range(0, 5))
                    bnds2 = tuple((1, 3) for n in range(0, 5))
                    bnds = bnds1 + bnds2

                    #DO NOT FIND OPTIMAL SOLUTION
                    #                t1=t.time();
                    #                mdl = minimize(iop, x0, args=(inp0, inp1, inp2, inp3, inp4, out0, distanceMat), method='Nelder-Mead', options={'maxiter':500})
                    #                print (t.time()-t1)

                    #                #OK
                    #                t1=t.time();
                    #                mdl = minimize(iop, x0, args=(inp0, inp1, inp2, inp3, inp4, out0, distanceMat), bounds=bnds, method='L-BFGS-B', options={'maxiter':500})
                    #                print (t.time()-t1)
                    #

                    #                t1=t.time();
                    #                mdl = minimize(iop, x0, args=(inp0, inp1, inp2, inp3, inp4, out0, distanceMat), method='COBYLA', options={'maxiter':500})
                    #                (t.time()-t1)
                    #
                    # t1=t.time();
                    mdl = minimize(iop,
                                   x0,
                                   args=(inp0, inp1, inp2, inp3, inp4, out0,
                                         distanceMat),
                                   bounds=bnds,
                                   method='SLSQP',
                                   options={'maxiter': 500})
                    #                print(mdl)
                    # print("4: %s" % (t.time() - t1));
                    #                print(mdl.x[5:])

                    omega[ir, ic, :] = mdl.x[5:]
                    alpha[ir, ic, :] = mdl.x[0:5]

    conf.omegaFinalStep1_notFiltered = omega

    omegaFinal2 = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))

    for i in range(0, nPrec):
        for irAgg in range(0, ny):
            for icAgg in range(0, nx):
                omegaFinal2[irAgg * 4:irAgg * 4 + 4, icAgg * 4:icAgg * 4 + 4,
                            i] = omega[irAgg, icAgg, i]
        print('precursor interpolated: ' + str(i))

    # omegaFinal = omegaFinal2
    omegaFinal = np.zeros_like(omegaFinal2)
    for i in range(0, 5):
        tmp = omegaFinal2[:, :, i]
        tmp = gf.gaussian_filter(tmp, sigma=.5)
        omegaFinal[:, :, i] = tmp

    omegaFinal = np.round(omegaFinal, 1)
    # omegaFinal = q.quant(omegaFinal, 0.2)  # discretize

    #keep only results on the mask
    omegaFinal[conf.flagRegioMat == 0] = np.nan

    conf.omegaFinalStep1 = omegaFinal
    conf.ci2Step1 = []
    conf.CovB2Step1 = []
def step1_omegaOptSliding_aggRes_perPoll(conf):

    prctileVec1 = np.array([100, 100, 100, 100, 100])
    #    prctileVec2=np.array([70, 70, 70, 70, 70]);
    categories = np.array([1])

    #convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)
    rad = conf.radStep1
    nPrec = len(conf.vec3[conf.POLLSEL])  #conf.nPrec;
    rf = 0  #conf.rf1;
    flagRegioMat = np.copy(conf.flagRegioMat)

    #pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    #convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)

    #initialize variables
    omega = np.full([ny, nx, nPrec], np.nan)
    alpha = np.full([ny, nx, nPrec], np.nan)
    ci2 = np.empty((nPrec), dtype=object)
    CovB2 = np.empty((nPrec), dtype=object)
    #    alphaTmp = np.zeros((categories.size));
    #    omegaTmp = np.zeros((categories.size));
    # define training scenarios; note scenarios number is +1 if checking DoE...as in line 74 it is -1

    if conf.domain == 'emep10km':
        # if conf.aqi == 'SURF_ug_PM25_rh50-Yea':
        if 'SURF_ug_PM25_rh50' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 5]), np.array([1, 6]))
        # elif conf.aqi == 'SURF_ug_PM10_rh50-Yea':
        elif 'SURF_ug_PM10_rh50' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 4]), np.array([1, 6]))
        elif 'SURF_ppb_O3' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]))
        elif 'SURF_ug_NOx' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]))
    elif conf.domain == 'ineris7km':
        IdeVec = (np.array([1, 2]), np.array([1, 3]), np.array([1, 4]),
                  np.array([1, 5]), np.array([1, 6]))

    #loop over precursors
    for precursor in range(0, nPrec):
        PREC = precursor
        Ide = IdeVec[precursor]
        icel = 0

        #intialize variables
        numcells = nx * ny
        numcells = np.sum(
            flagRegioMat >
            0)  # create empty matrix only for really needed points
        PrecPatch = np.zeros((numcells, (rad * 2 + 1)**2))
        IndicEq = np.zeros((numcells, 1))
        indexUsed = np.full((numcells, 1), np.nan)
        #np.zeros((nx*ny,1));
        potency = np.full((numcells), np.nan)
        #np.zeros((ny,nx));
        print('precursor: ' + str(PREC))

        for ic in range(0, nx):
            #print(PREC, ic);
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #variable to store which group ot be considered
                    #                    indexUsed[icel] = np.where(val==potency[ir,ic]);

                    #create data for omega calculation
                    nSc = Ide.shape[0] - 1
                    # size(Ide,2)-1
                    tmpPrec = ep.EquaPrec(ic, ir, rf, nx, ny, nSc,
                                          Prec.shape[3], Prec[:, :, Ide[1],
                                                              PREC], rad)
                    # patches
                    tmpInde = ei.EquaIndic(ic, ir, rf, nx, ny, nSc,
                                           Indic[:, :, Ide[1]])
                    # indicator

                    #store data for omega calculation
                    PrecPatch[icel, :] = tmpPrec
                    #np.squeeze(tmpPrec)
                    IndicEq[icel] = tmpInde
                    icel = icel + 1

#        indexUsedLin = np.reshape(indexUsed, -1, order='F');

#compute omega for each group of cells, given precursor p
#        for i in range(val.size):
        remInd = (IndicEq > 0).flatten()
        i = 1
        x0 = [1, 1.5]
        #        ind = np.where(indexUsedLin==i)[0];

        inp1 = PrecPatch[remInd]  #[ind,:];
        inp2 = IndicEq[remInd]  #[ind];

        iop = lambda inp1, beta1, beta2: inv.InvDistN_opt_prec([beta1, beta2],
                                                               inp1, rad)

        [mdl, r, J, CovB] = nlin.nlinfit(iop, inp1, inp2.ravel(), x0)

        #        ci2[PREC] = nlpa.nlparci(r,J);
        #        CovB2[PREC] = CovB;
        alphaTmp = mdl[0]
        omegaTmp = mdl[1]

        #repeat result for each belonging to a given group
        for ic in range(0, nx):
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #                    indexUsed = np.where(val==potency[ir,ic])[0];
                    alpha[ir, ic, PREC] = alphaTmp
                    omega[ir, ic, PREC] = omegaTmp

        del (PrecPatch, IndicEq, indexUsed, potency)

    #rescale to initial spatial resolution, through nearest interpolation
    #initialize variable
    omegaFinal = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))
    alphaFinal = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))

    [i, j] = np.where(np.isfinite(omega[:, :, 0]))

    for p in range(0, nPrec):
        omegaFinal[:, :, p] = omega[i[0], j[0], p]
        alphaFinal[:, :, p] = alpha[i[0], j[0], p]

    #store final results
    conf.omegaFinalStep1_alldom = omegaFinal
    conf.alphaFinalStep1_alldom = alphaFinal
    conf.ci2Step1 = ci2
    conf.CovB2Step1 = CovB2

    #######################################################
    #######################################################
    #START NOW THE SECOND STEP OF THE COMPUTATION OF OMEGA
    #######################################################
    #######################################################
    # convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)
    rad = conf.radStep2
    nPrec = conf.nPrec
    rf = conf.rf1
    flagRegioMat = np.copy(conf.flagRegioMat)

    Y, X = np.mgrid[-rad:rad + 1:1, -rad:rad + 1:1]
    # np.meshgrid(r_[-rad:1:rad], r_[-rad:1:rad]);
    F = 1 / ((1 + (X**2 + Y**2)**(0.5)))

    # pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    # convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)

    af = conf.alphaFinalStep1_alldom
    of = conf.omegaFinalStep1_alldom

    ICvecalpha = [
        af[np.isfinite(af)][0], af[np.isfinite(af)][1], af[np.isfinite(af)][2],
        af[np.isfinite(af)][3], af[np.isfinite(af)][4]
    ]

    ICvecomega = [
        of[np.isfinite(of)][0], of[np.isfinite(of)][1], of[np.isfinite(of)][2],
        of[np.isfinite(of)][3], of[np.isfinite(of)][4]
    ]

    # initialize variables
    omega = np.full([ny, nx, nPrec], 1.5)
    # omega = np.full([ny, nx, nPrec], 2);
    # for i in range(0,5):
    #     omega[:,:,i] = of[np.isfinite(of)][i]

    # ICvecalpha = [1, 1, 1, 1, 1]
    # ICvecomega = [1.5, 1.5, 1.5, 2.6, 1.5]

    # loop over precursors
    for precursor in range(0, nPrec):
        PREC = precursor
        Ide = IdeVec[precursor]

        # intialize variables
        print('precursor: ' + str(PREC))
        #        icel=1
        #        flagIC = 0
        for ic in range(0, nx):
            print(PREC, ic)
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    nSc = Ide.shape[0] - 1
                    # size(Ide,2)-1
                    inp1 = ep.EquaPrec(ic, ir, rf, nx, ny, nSc, Prec.shape[3],
                                       Prec[:, :, Ide[1], PREC], rad)
                    # patches
                    inp2 = ei.EquaIndic(ic, ir, rf, nx, ny, nSc, Indic[:, :,
                                                                       Ide[1]])
                    # indicator
                    #                    print(inp1.shape)
                    remInd = (inp2 > 0).flatten()
                    inp1 = inp1[remInd]  # [ind,:];
                    inp2 = inp2[remInd]  # [ind];

                    x0tmp_alpha = ICvecalpha[precursor]
                    x0tmp_omega = ICvecomega[precursor]
                    x0 = [x0tmp_alpha, x0tmp_omega]

                    bndstmp_alpha = (0, 10
                                     )  # x0tmp_alpha - 0.5, x0tmp_alpha + 0.5)
                    bndstmp_omega = (x0tmp_omega - 0.5, x0tmp_omega + 0.5)
                    # bnds = ((0, 2), bndstmp)
                    bnds = (bndstmp_alpha, bndstmp_omega)

                    # a=time.time()
                    opts = {'disp': False, 'ftol': 10e-6}
                    mdl = minimize(iop2,
                                   x0,
                                   args=(inp1, inp2, rad, F),
                                   bounds=bnds,
                                   method='L-BFGS-B',
                                   options=opts)  # L-BFGS-B, COBYLA SLSQP
                    # print(mdl.success)
                    omega[ir, ic, PREC] = mdl.x[1]
                    # mdl[1]

                    # if (mdl.x[1]<1.1) or (mdl.x[1]>1.9) :
                    #     mdl.x[1] = ICvec[precursor]
                    #     omega[ir, ic, PREC] = mdl.x[1];  # mdl[1]

                    # if (mdl.success == True) and (mdl.x[1] > 1) and (mdl.x[1] < 3) and (mdl.x[1] != x0[1]):
                    #     conf.omegaAccuracy[ir,ic,PREC] = 2
                    #     omega[ir, ic, PREC] = mdl.x[1];  # mdl[1];
                    #     # print(mdl)
                    # else:
                    #     omega[ir, ic, PREC] = conf.step1_omegaOptPerPoll_allCells[ir, ic , PREC]

    # omega = np.round(omega,1)

    conf.omegaFinalStep1_notFiltered = omega

    omegaFinal2 = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))

    for i in range(0, nPrec):
        for irAgg in range(0, ny):
            for icAgg in range(0, nx):
                omegaFinal2[irAgg * 4:irAgg * 4 + 4, icAgg * 4:icAgg * 4 + 4,
                            i] = omega[irAgg, icAgg, i]
        print('precursor interpolated: ' + str(i))

    # omegaFinal = omegaFinal2
    omegaFinal = np.zeros_like(omegaFinal2)
    for i in range(0, 5):
        tmp = omegaFinal2[:, :, i]
        tmp = gf.gaussian_filter(tmp, sigma=10)
        omegaFinal[:, :, i] = tmp

    omegaFinal = np.round(omegaFinal, 1)
    # omegaFinal = q.quant(omegaFinal, 0.2)  # discretize

    conf.omegaFinalStep1 = omegaFinal
    conf.ci2Step1 = []
    conf.CovB2Step1 = []
Beispiel #4
0
def step1_omegaOptimization(conf):

    prctileVec1 = np.array([100, 100, 100, 100, 100])
    #    prctileVec2=np.array([70, 70, 70, 70, 70]);
    categories = np.array([1])

    #convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)
    rad = conf.radStep1
    nPrec = len(conf.vec3[conf.POLLSEL])  #conf.nPrec;
    rf = 0  #conf.rf1;
    flagRegioMat = np.copy(conf.flagRegioMat)

    #pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    #convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)
    lat = f7.from7to28(conf.y)

    #initialize variables
    omega = np.full([ny, nx, nPrec], np.nan)
    alpha = np.full([ny, nx, nPrec], np.nan)
    ci2 = np.empty((nPrec), dtype=object)
    CovB2 = np.empty((nPrec), dtype=object)
    #    alphaTmp = np.zeros((categories.size));
    #    omegaTmp = np.zeros((categories.size));
    # define training scenarios; note scenarios number is +1 if checking DoE...as in line 74 it is -1

    if conf.domain == 'emep10km':
        # if conf.aqi == 'SURF_ug_PM25_rh50-Yea':
        if 'SURF_ug_PM25_rh50' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 5]), np.array([1, 6]))
        # elif conf.aqi == 'SURF_ug_PM10_rh50-Yea':
        elif 'SURF_ug_PM10_rh50' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 4]), np.array([1, 6]))
        elif 'SURF_ppb_O3' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]))
        elif 'SURF_ug_NOx' in conf.aqi:
            IdeVec = (np.array([1, 1]), np.array([1, 2]))
    elif conf.domain == 'ineris7km':
        IdeVec = (np.array([1, 2]), np.array([1, 3]), np.array([1, 4]),
                  np.array([1, 5]), np.array([1, 6]))

    #loop over precursors
    for precursor in range(0, nPrec):
        PREC = precursor
        Ide = IdeVec[precursor]
        icel = 0

        #intialize variables
        numcells = nx * ny
        numcells = np.sum(
            flagRegioMat >
            0)  # create empty matrix only for really needed points
        PrecPatch = np.zeros((numcells, (rad * 2 + 1)**2))
        IndicEq = np.zeros((numcells, 1))
        latVec = np.zeros((numcells, 1))
        indexUsed = np.full((numcells, 1), np.nan)
        #np.zeros((nx*ny,1));
        potency = np.full((numcells), np.nan)
        #np.zeros((ny,nx));
        print('precursor: ' + str(PREC))

        for ic in range(0, nx):
            #print(PREC, ic);
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #variable to store which group ot be considered
                    #                    indexUsed[icel] = np.where(val==potency[ir,ic]);

                    #create data for omega calculation
                    nSc = Ide.shape[0] - 1
                    # size(Ide,2)-1
                    tmpPrec = ep.EquaPrec(ic, ir, rf, nx, ny, nSc,
                                          Prec.shape[3], Prec[:, :, Ide[1],
                                                              PREC], rad)
                    # patches
                    tmpInde = ei.EquaIndic(ic, ir, rf, nx, ny, nSc,
                                           Indic[:, :, Ide[1]])
                    # indicator

                    #store data for omega calculation
                    PrecPatch[icel, :] = tmpPrec
                    #np.squeeze(tmpPrec)
                    IndicEq[icel] = tmpInde
                    latVec[icel] = lat[ir, ic]
                    icel = icel + 1

#        indexUsedLin = np.reshape(indexUsed, -1, order='F');

#compute omega for each group of cells, given precursor p
#        for i in range(val.size):
        remInd = (IndicEq > 0).flatten()
        i = 1
        x0 = [1, 1.5]
        #        ind = np.where(indexUsedLin==i)[0];

        inp1 = PrecPatch[remInd]  #[ind,:];
        inp2 = IndicEq[remInd]  #[ind];
        latVecFilt = latVec[remInd]

        bnds = ((0, 2), (0.1, 2.9))
        opts = {'disp': False, 'ftol': 10e-9}

        mdl = minimize(iop,
                       x0,
                       args=(inp1, inp2, rad, latVecFilt, conf.ratioPoly),
                       bounds=bnds,
                       method='L-BFGS-B',
                       options=opts)  # L-BFGS-B, TNC

        # iop = lambda inp1,beta1,beta2: inv.InvDistN_opt_prec([beta1,beta2],inp1,rad);
        #
        # [mdl,r,J,CovB] = nlin.nlinfit(iop,inp1,inp2.ravel(),x0);

        #        ci2[PREC] = nlpa.nlparci(r,J);
        #        CovB2[PREC] = CovB;
        alphaTmp = mdl.x[0]
        omegaTmp = mdl.x[1]

        #repeat result for each belonging to a given group
        for ic in range(0, nx):
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #                    indexUsed = np.where(val==potency[ir,ic])[0];
                    alpha[ir, ic, PREC] = alphaTmp
                    omega[ir, ic, PREC] = omegaTmp

        del (PrecPatch, IndicEq, indexUsed, potency)

    #rescale to initial spatial resolution, through nearest interpolation
    #initialize variable
    omegaFinal = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))
    alphaFinal = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))

    [i, j] = np.where(np.isfinite(omega[:, :, 0]))

    for p in range(0, nPrec):
        omegaFinal[:, :, p] = omega[i[0], j[0], p]
        alphaFinal[:, :, p] = alpha[i[0], j[0], p]

    #store final results
    conf.omegaFinalStep1_alldom = omegaFinal
    conf.alphaFinalStep1_alldom = alphaFinal
    conf.ci2Step1 = ci2
    conf.CovB2Step1 = CovB2

    #######################################################
    #######################################################
    #START NOW THE SECOND STEP OF THE COMPUTATION OF OMEGA
    #######################################################
    #######################################################
    # convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)
    rad = conf.radStep2
    nPrec = conf.nPrec
    rf = conf.rf1
    flagRegioMat = np.copy(conf.flagRegioMat)

    # Y, X = np.mgrid[-rad:rad + 1:1, -rad:rad + 1:1];  # np.meshgrid(r_[-rad:1:rad], r_[-rad:1:rad]);
    # F = 1 / ((1 + (X ** 2 + Y ** 2) ** (0.5)));

    # pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    # convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)

    af = conf.alphaFinalStep1_alldom
    of = conf.omegaFinalStep1_alldom

    ICvecalpha = [
        af[np.isfinite(af)][0], af[np.isfinite(af)][1], af[np.isfinite(af)][2],
        af[np.isfinite(af)][3], af[np.isfinite(af)][4]
    ]

    ICvecomega = [
        of[np.isfinite(of)][0], of[np.isfinite(of)][1], of[np.isfinite(of)][2],
        of[np.isfinite(of)][3], of[np.isfinite(of)][4]
    ]

    # initialize variables
    omega = np.full([ny, nx, nPrec], 1.5)
    # omega = np.full([ny, nx, nPrec], 2);
    # for i in range(0,5):
    #     omega[:,:,i] = of[np.isfinite(of)][i]

    ICvecalpha = [1, 1, 1, 1, 1]
    ICvecomega = [1.5, 1.5, 1.5, 1.5, 1.5]

    # loop over precursors
    for precursor in range(0, nPrec):
        PREC = precursor
        Ide = IdeVec[precursor]

        # intialize variables
        print('precursor: ' + str(PREC))
        #        icel=1
        #        flagIC = 0

        t1 = time.time()
        #Ide or conf.Ide ???
        argslist = (zip(
            np.where(flagRegioMat > 0)[0],
            np.where(flagRegioMat > 0)[1], repeat(Ide), repeat(rf), repeat(nx),
            repeat(ny), repeat(Prec), repeat(PREC), repeat(Indic),
            repeat(ICvecalpha), repeat(ICvecomega), repeat(rad),
            repeat(conf.ratioPoly), repeat(lat)))

        pool = mp.Pool()  # by default use available corse
        print('***** Using parallel computing with ' + str(mp.cpu_count()) +
              ' cores *****')
        result = pool.starmap_async(computeOutput, argslist)
        pool.close()
        pool.join()
        print(str(time.time() - t1))
        res = np.vstack(result.get())  # result as nparray
        print(res)
        alpha[np.where(flagRegioMat > 0)[0],
              np.where(flagRegioMat > 0)[1], PREC] = res[:, 0]
        omega[np.where(flagRegioMat > 0)[0],
              np.where(flagRegioMat > 0)[1], PREC] = res[:, 1]

    conf.omegaFinalStep1_notFiltered = omega

    omegaFinal2 = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))

    #from aggregated to initial resolution
    for i in range(0, nPrec):
        for irAgg in range(0, ny):
            for icAgg in range(0, nx):
                omegaFinal2[irAgg * 4:irAgg * 4 + 4, icAgg * 4:icAgg * 4 + 4,
                            i] = omega[irAgg, icAgg, i]
        print('precursor interpolated: ' + str(i))

    #initialize matrix and if needed apply gaussian filter
    omegaFinal = np.zeros_like(omegaFinal2)
    for i in range(0, 5):
        tmp = omegaFinal2[:, :, i]
        if conf.gf == 1:  # if gaussian filter has to be applied
            tmp = gf.gaussian_filter(tmp, sigma=10)
        omegaFinal[:, :, i] = tmp

    #rount results and save it to final matrix
    omegaFinal = np.round(omegaFinal, 1)
    conf.omegaFinalStep1 = omegaFinal
    conf.ci2Step1 = []
    conf.CovB2Step1 = []
def step1_omegaOptimization(conf):

    #convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec);
    ny = int(conf.ny/4);
    nx = int(conf.nx/4);
    rad = conf.radStep1;
    nPrec = 5#len(conf.vec3[conf.POLLSEL])#conf.nPrec;
    rf = conf.rf1
    flagRegioMat = np.copy(conf.flagRegioMat);

    #pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros((ny+rad*2,nx+rad*2,Prec.shape[2],Prec.shape[3]));
    Prec2[rad:-rad,rad:-rad,:,:] = Prec[:,:,:,:];
    Prec=Prec2;

    #convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic);
    flagRegioMat = f7.from7to28(flagRegioMat);
    lat = f7.from7to28(conf.y);
    # flagPerNoxPP??m = f7.from7to28(flagPerNoxPPm);

    #initialize variables
    omega = np.full([ny,nx,nPrec],1.5);
    alpha = np.full([ny,nx,nPrec],np.nan);
    ci2 = np.empty((nPrec), dtype=object);
    CovB2 = np.empty((nPrec), dtype=object);
#    alphaTmp = np.zeros((categories.size));
#    omegaTmp = np.zeros((categories.size));

    #define training scenarios; note scenarios number is +1 if checking DoE...as in line 74 it is -1
    if conf.domain == 'emep10km':
        if conf.aqi == 'SURF_ug_PM25_rh50-Yea':
            IdeVec = (np.array([1, 1]),np.array([1, 2]),np.array([1, 3]),np.array([1, 5]),np.array([1, 6]));
        elif conf.aqi == 'SURF_ug_PM10_rh50-Yea':
            IdeVec = (np.array([1, 1]),np.array([1, 2]),np.array([1, 3]),np.array([1, 4]),np.array([1, 6]));
    elif conf.domain == 'ineris7km':
        IdeVec = (np.array([1, 2]),np.array([1, 3]),np.array([1, 4]),np.array([1, 5]),np.array([1, 6]));
    elif (conf.domain == 'emepV433_camsV221')  | (conf.domain == 'edgar2015') | (conf.domain == 'emepV434_camsV42'):
        IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]), np.array([1, 4]), np.array([1, 5]));

    #loop over precursors
    for precursor in range(0, 5):
        
        PREC = precursor;
        Ide = IdeVec[precursor];
#        icel = 0;
        
        if (PREC == 2 or PREC== 3):
            bnds = ((0, 1), (1.5, 2.5))
        else:
            bnds = ((0, 1), (1.5, 2.5))

        #intialize variables
#        numcells = nx*ny
#        numcells = np.sum(flagRegioMat>0) # create empty matrix only for really needed points
#        PrecPatch = np.zeros((numcells,(rad*2+1)**2));
#        IndicEq = np.zeros((numcells,1));
#        latVec =  np.zeros((numcells,1));

        print('precursor: '+str(PREC));

        for ic in range(0, nx):
            print(PREC, ic);

            for ir in range(0, ny):
                if flagRegioMat[ir,ic]>0:
                    #variable to store which group ot be considered
#                    indexUsed[icel] = np.where(val==potency[ir,ic]);

                    #create data for omega calculation
                    nSc = Ide.shape[0]-1;# size(Ide,2)-1
                    tmpPrec = ep.EquaPrec(ic,ir,rf,nx,ny,nSc,Prec.shape[3],Prec[:,:,Ide[1],PREC],rad); # patches
                    tmpInde = ei.EquaIndic(ic,ir,rf,nx,ny,nSc,Indic[:,:,Ide[1]]); # indicator

                    #store data for omega calculation
#                    PrecPatch[icel,:] = tmpPrec; #np.squeeze(tmpPrec)
#                    IndicEq[icel] = tmpInde;
                    latVec = lat[ir,ic]
#                    icel = icel+1;

#                    remInd = (tmpInde>0).flatten()
                    i=1
                    x0 = [1, 2];
#                    print(remInd)

#                    inp1 = tmpPrec[remInd]#[ind,:];
#                    inp2 = tmpInde[remInd]#[ind];
                    inp1 = tmpPrec#[ind,:];
                    inp2 = tmpInde#[ind];

#                    mdl = minimize(iop, x0, args=(inp1, inp2, rad, latVec, conf.ratioPoly), bounds=bnds, method='BFGS', options=opts)  # L-BFGS-B, TNC
                    opts = {'disp': False}
#                    mdl = minimize(iop, x0, args=(inp1, inp2, rad, latVec, conf.ratioPoly), method='BFGS', options=opts)  # L-BFGS-B, TNC
                    
#                    print(mdl.x)
                    mdl = minimize(iop, x0, args=(inp1, inp2, rad, latVec, conf.ratioPoly), bounds=bnds, method='L-BFGS-B', options=opts)  # L-BFGS-B, TNC
#                    print(mdl.x)
#                    mdl = minimize(iop, x0, args=(inp1, inp2, rad, latVec, conf.ratioPoly), bounds=bnds, method='SLSQP', options=opts)  # L-BFGS-B, TNC
#                    print(mdl.x)
                    alpha[ir,ic,PREC] = mdl.x[0];
                    omega[ir,ic,PREC] = mdl.x[1];
        
    #rescale to initial spatial resolution, through nearest interpolation
    #initialize variable
    
    conf.omegaFinalStep1_notFiltered = omega

    omegaFinal2 = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5));

    for i in range(0, nPrec):
        for irAgg in range(0, ny):
            for icAgg in range(0, nx):
                omegaFinal2[irAgg * 4:irAgg * 4 + 4, icAgg * 4:icAgg * 4 + 4, i] = omega[irAgg, icAgg, i]
        print('precursor interpolated: ' + str(i));

    # omegaFinal = omegaFinal2
    omegaFinal = np.zeros_like(omegaFinal2)
    for i in range(0, 5):
        tmp = omegaFinal2[:, :, i]
        tmp = gf.gaussian_filter(tmp, sigma=5)
        omegaFinal[:, :, i] = tmp

    omegaFinal = np.round(omegaFinal, 1)
    # omegaFinal = q.quant(omegaFinal, 0.2)  # discretize
    
    #keep only results on the mask
    omegaFinal[conf.flagRegioMat==0] =np.nan    
    
    conf.omegaFinalStep1 = omegaFinal;
    conf.ci2Step1 = [];
    conf.CovB2Step1 = [];
Beispiel #6
0
def step1_omegaOptimization(conf):

    prctileVec1 = np.array([100, 100, 100, 100, 100])
    #    prctileVec2=np.array([70, 70, 70, 70, 70]);
    categories = np.array([1])

    #convert from 28 to 7 km
    Prec = f7.from7to28(conf.Prec)
    ny = int(conf.ny / 4)
    nx = int(conf.nx / 4)
    rad = conf.radStep1
    nPrec = len(conf.vec3[conf.POLLSEL])  #conf.nPrec;
    rf = 0
    flagRegioMat = np.copy(conf.flagRegioMat)

    #pad Prec with zeros around initial matrix, to perform matrix products later on
    Prec2 = np.zeros(
        (ny + rad * 2, nx + rad * 2, Prec.shape[2], Prec.shape[3]))
    Prec2[rad:-rad, rad:-rad, :, :] = Prec[:, :, :, :]
    Prec = Prec2

    #convert from 28 to 7 km
    Indic = f7.from7to28(conf.Indic)
    flagRegioMat = f7.from7to28(flagRegioMat)
    lat = f7.from7to28(conf.y)
    # flagPerNoxPP??m = f7.from7to28(flagPerNoxPPm);

    #initialize variables
    omega = np.full([ny, nx, nPrec], np.nan)
    alpha = np.full([ny, nx, nPrec], np.nan)
    ci2 = np.empty((nPrec), dtype=object)
    CovB2 = np.empty((nPrec), dtype=object)
    #    alphaTmp = np.zeros((categories.size));
    #    omegaTmp = np.zeros((categories.size));

    #define training scenarios; note scenarios number is +1 if checking DoE...as in line 74 it is -1
    if conf.domain == 'emep10km':
        if conf.aqi == 'SURF_ug_PM25_rh50-Yea':
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 5]), np.array([1, 6]))
        elif conf.aqi == 'SURF_ug_PM10_rh50-Yea':
            IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                      np.array([1, 4]), np.array([1, 6]))
    elif conf.domain == 'ineris7km':
        IdeVec = (np.array([1, 2]), np.array([1, 3]), np.array([1, 4]),
                  np.array([1, 5]), np.array([1, 6]))
    elif (conf.domain == 'emepV433_camsV221') | (
            conf.domain == 'edgar2015') | (conf.domain == 'emepV434_camsV42'):
        IdeVec = (np.array([1, 1]), np.array([1, 2]), np.array([1, 3]),
                  np.array([1, 4]), np.array([1, 5]))

    #loop over precursors
    for precursor in range(0, nPrec):
        PREC = precursor
        Ide = IdeVec[precursor]
        icel = 0

        #intialize variables
        numcells = nx * ny
        numcells = np.sum(
            flagRegioMat >
            0)  # create empty matrix only for really needed points
        PrecPatch = np.zeros((numcells, (rad * 2 + 1)**2))
        IndicEq = np.zeros((numcells, 1))
        latVec = np.zeros((numcells, 1))
        indexUsed = np.full((numcells, 1), np.nan)
        #np.zeros((nx*ny,1));
        potency = np.full((numcells), np.nan)
        #np.zeros((ny,nx));
        print('precursor: ' + str(PREC))

        for ic in range(0, nx):
            #print(PREC, ic);
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #variable to store which group ot be considered
                    #                    indexUsed[icel] = np.where(val==potency[ir,ic]);

                    #create data for omega calculation
                    nSc = Ide.shape[0] - 1
                    # size(Ide,2)-1
                    tmpPrec = ep.EquaPrec(ic, ir, rf, nx, ny, nSc,
                                          Prec.shape[3], Prec[:, :, Ide[1],
                                                              PREC], rad)
                    # patches
                    tmpInde = ei.EquaIndic(ic, ir, rf, nx, ny, nSc,
                                           Indic[:, :, Ide[1]])
                    # indicator

                    #store data for omega calculation
                    PrecPatch[icel, :] = tmpPrec
                    #np.squeeze(tmpPrec)
                    IndicEq[icel] = tmpInde
                    latVec[icel] = lat[ir, ic]
                    icel = icel + 1

#        indexUsedLin = np.reshape(indexUsed, -1, order='F');

#compute omega for each group of cells, given precursor p
#        for i in range(val.size):
        remInd = (IndicEq > 0).flatten()
        i = 1
        x0 = [1, 2]
        #        ind = np.where(indexUsedLin==i)[0];

        inp1 = PrecPatch[remInd]  #[ind,:];
        inp2 = IndicEq[remInd]  #[ind];
        latVecFilt = latVec[remInd]

        #rescaling input between min and max
        # scaler = MinMaxScaler(feature_range=(0, 1))
        # scaler.fit(inp1)
        # inp1 = scaler.transform(inp1)

        # iop = lambda inp1,beta1,beta2: inv.InvDistN_opt_prec([beta1,beta2],inp1,rad);

        # [mdl,r,J,CovB] = nlin.nlinfit(iop,inp1,inp2.ravel(),x0);

        bnds = ((0, 2), (0.1, 2.9))
        opts = {'disp': False, 'ftol': 10e-6}

        mdl = minimize(iop,
                       x0,
                       args=(inp1, inp2, rad, latVecFilt, conf.ratioPoly),
                       bounds=bnds,
                       method='L-BFGS-B',
                       options=opts)  # L-BFGS-B, TNC
        # ?import scipy.optimize.dif as bs
        #mdl = bs(iop, x0, args=(inp1, inp2, rad, latVecFilt, conf.ratioPoly), bounds=bnds, method='L-BFGS-B', options=opts)  # L-BFGS-B, TNC

        # print('prec' + str(precursor))
        # print(mdl)

        # ci2[PREC] = nlpa.nlparci(r,J);
        #        CovB2[PREC] = CovB;
        alphaTmp = mdl.x[0]
        omegaTmp = mdl.x[1]
        #print(alphaTmp)
        #repeat result for each belonging to a given group
        for ic in range(0, nx):
            for ir in range(0, ny):
                if flagRegioMat[ir, ic] > 0:
                    #                    indexUsed = np.where(val==potency[ir,ic])[0];
                    alpha[ir, ic, PREC] = alphaTmp
                    omega[ir, ic, PREC] = omegaTmp

        del (PrecPatch, IndicEq, indexUsed, potency)

    #rescale to initial spatial resolution, through nearest interpolation
    #initialize variable
    omegaFinal = np.zeros((conf.Prec.shape[0], conf.Prec.shape[1], 5))

    for i in range(0, 5):
        omegaFinal[:, :, i] = np.unique(omega[:, :, i])[0]

    #loop on precursors
    # for i in range(0, nPrec):
    #     #define interpolator object
    #     xgv = np.arange(1., conf.Prec.shape[0]/4+1);
    #     ygv = np.arange(1., conf.Prec.shape[1]/4+1);
    #     F=interpol.RegularGridInterpolator((xgv, ygv), omega[:,:,i],method='nearest',bounds_error=False, fill_value=None);
    #
    #     #interpolate
    #     Xq = np.arange(1., conf.Prec.shape[0]/4+1, 1/4);
    #     Yq = np.arange(1., conf.Prec.shape[1]/4+1, 1/4);
    #     [Y2,X2] = np.meshgrid(Yq, Xq);
    #     pts=((X2.flatten(),Y2.flatten()))
    #     omegaFinal[:,:,i] = F(pts).reshape(conf.Prec.shape[0],conf.Prec.shape[1])
    #     print('precursor interpolated: '+str(i));

    #store final results
    # replacingVal = np.unique(omegaFinal[:,:,whichPollToUpdate][~np.isnan(omegaFinal[:,:,whichPollToUpdate])])
    # conf.omegaFinalStep1[:,:,whichPollToUpdate] = replacingVal#omegaFinal[:,:,whichPollToUpdate];
    conf.omegaFinalStep1 = omegaFinal
    # conf.omegaFinalStep1_28km = omegaFinal
    conf.ci2Step1 = ci2
    conf.CovB2Step1 = CovB2