Beispiel #1
0
def test_cx_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(2))
    circuit_1.add(Hadamard(0))
    circuit_1.add(Cx(0, 1))
    circuit_1.add(Measure(0, 1))

    circuit_2 = Circuit()
    circuit_2.add(Qubits(2))
    circuit_2.add(Hadamard(1))
    circuit_2.add(Cx(0, 1))
    circuit_2.add(Measure(0, 1))

    sess = QSession(backend=QuantumSimulator())
    result_1 = sess.run(circuit_1, num_shots=1024)
    result_2 = sess.run(circuit_2, num_shots=1024)

    assert result_1['01'] == 0
    assert result_1['10'] > 450
    assert result_1['00'] > 450
    assert result_1['11'] == 0

    assert result_2['01'] == 0
    assert result_2['10'] == 0
    assert result_2['00'] > 450
    assert result_2['11'] > 450
Beispiel #2
0
def test_teleportation():
    circuit = Circuit()
    circuit.add(Qubits(3))
    circuit.add(CNOT(1, 2))
    circuit.add(CNOT(0, 1))
    circuit.add(Hadamard(0))
    circuit.add(Measure([0, 1]))

    result = circuit.run(1024).result

    # All 16 states should be relatively equal probability
    if result["11"] == 1024:
        circuit.add(PauliX(2))
        circuit.add(PauliZ(2))
    elif result["10"] == 1024:
        circuit.add(PauliZ(2))
    elif result["01"] == 1024:
        circuit.add(PauliX(2))
    circuit.add(Measure([2]))

    result2 = circuit.run(1024).result

    # TODO: Fix this test.

    assert result2
Beispiel #3
0
def find_period(a, N):
    """WIP: Quantum subroutine for shor's algorithm.
    Finds the period of a function of the form:
    f(x) = a^x % N

    This uses the quantum fourier transform.
    """

    circuit = Circuit()

    # circuit.add(Qubits(5))
    # circuit.add(QFT(0, 1, 2, 3))
    # circuit.add(X(4))
    # circuit.add(quantum_amod_15(a))
    # circuit.add(QFT(0, 1, 2, 3))

    circuit.add(Qubits(5))
    circuit.add(H(0)).add(H(1)).add(H(2)).add(H(3))
    circuit.add(X(4))
    circuit.add(quantum_amod_15(a))
    circuit.add(QFT(3, 2, 1, 0))  # Inverse Quantum Fourier transform

    job = circuit.run(1024)
    result = job.result

    # TODO: This is still broken, likely due to differences between Qiskit and our library
    # See: https://github.com/shor-team/shor/issues/39
    # from shor.utils.visual import plot_results
    # plot_results(result)

    most_common = result.counts.most_common()
    if len(most_common) > 1:
        return gcd(most_common[0][0], most_common[1][0])
    return 1
def test_u3_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(U3(0, theta=np.pi / 2, phi=-np.pi / 2, lam=np.pi / 2))
    circuit_1.add(Measure([0]))

    circuit_2 = Circuit()
    circuit_2.add(Qubits(1))
    circuit_2.add(Rx(theta=np.pi))
    circuit_2.add(Measure([0]))
    result_1 = circuit_1.run(1024).result
    result_2 = circuit_2.run(1024).result

    assert result_1["0"] > 450
    assert result_1["1"] > 450
    assert result_2["0"] > 450
    assert result_2["1"] > 450
Beispiel #5
0
def test_ry_int():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(Ry(0, angle=np.pi / 2))
    circuit.add(Measure([0]))
    job = circuit.run(1000)
    result = job.result
    assert result["0"] > 450
    assert result["1"] > 450
def test_u2_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(U2(0, phi=-np.pi / 2, alpha=np.pi / 2))
    circuit_1.add(Measure([0]))
    result_1 = circuit_1.run(1024).result

    assert result_1["0"] > 450
    assert result_1["1"] > 450
def test_t_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(T(0))  # Can also use H()
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    assert result["0"] == 1024
    assert result["1"] == 0
Beispiel #8
0
def test_U3_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(U3(0, theta=np.pi / 2, phi=-np.pi / 2, alpha=np.pi / 2))
    circuit_1.add(Measure(0))

    circuit_2 = Circuit()
    circuit_2.add(Qubits(1))
    circuit_2.add(Rx(theta=np.pi))
    circuit_2.add(Measure(0))

    sess = QSession(backend=QuantumSimulator())
    result_1 = sess.run(circuit_1, num_shots=1024)
    result_2 = sess.run(circuit_2, num_shots=1024)

    assert result_1['0'] > 450
    assert result_1['1'] > 450
    assert result_2['0'] > 450
    assert result_2['1'] > 450
def test_inity_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(Init_y(0))
    circuit_1.add(Measure([0]))

    result_1 = circuit_1.run(1024).result

    assert result_1["0"] > 450
    assert result_1["1"] > 450
def test_id_qubit():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(ID(0))
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    # Accounting for random noise, results won't be exact
    assert result["1"] == 0
    assert result["0"] == 1024
def test_u1_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliX(0))
    circuit.add(U1(0))
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    assert result["0"] == 0
    assert result["1"] == 1024
def test_pauliy_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliY(0))  # Can also use H()
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    # Accounting for random noise, results won't be exact
    assert result["0"] == 0
    assert result["1"] == 1024
Beispiel #13
0
def test_single_qubit():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(Hadamard(0))
    circuit.add(Measure([0]))

    job = circuit.run(1024, provider=QiskitProvider())
    result = job.result
    # Accounting for random noise, results won't be exact
    assert result[bin(0)] > 450
    assert result[bin(1)] > 450
def test_crz_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(CRZ(0, 1, angle=math.pi / 3))
    circuit.add(Measure(0, 1))
    job = circuit.run(1024)
    result = job.result
    assert result["11"] == 0
    assert result["00"] == 1024
    assert result["10"] == 0
    assert result["01"] == 0
Beispiel #15
0
def test_rz_int():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(Rz(0, angle=np.pi / 2))
    circuit.add(Measure(0))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1000)

    assert result['0'] == 1000
    assert result['1'] == 0
Beispiel #16
0
def test_s_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(S(0))  # Can also use H()
    circuit.add(Measure())

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['0'] == 1024
    assert result['1'] == 0
Beispiel #17
0
def test_crz_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(CRZ(0, 1, angle=math.pi / 3))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['11'] == 0
    assert result['00'] == 1024
    assert result['10'] == 0
    assert result['01'] == 0
def test_cr_int():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(Cr(0, 1, angle=np.pi / 2))
    circuit.add(Measure(0, 1))

    result = circuit.run(1000).result

    assert result["00"] == 1000
    assert result["01"] == 0
    assert result["10"] == 0
    assert result["11"] == 0
Beispiel #19
0
def test_u1_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliX(0))
    circuit.add(U1(0))
    circuit.add(Measure())

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['0'] == 0
    assert result['1'] == 1024
Beispiel #20
0
def test_ID_qubit():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(ID(0))
    circuit.add(Measure())

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    # Accounting for random noise, results won't be exact
    assert result['1'] == 0
    assert result['0'] == 1024
def test_crk_int():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(CRk(0, 1, k=2))
    circuit.add(Measure(0, 1))

    result = circuit.run(1000).result

    assert result["00"] == 1000
    assert result["01"] == 0
    assert result["10"] == 0
    assert result["11"] == 0
def test_mult_gate_inputs1():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(2))
    circuit_1.add(H([0, 1]))
    circuit_1.add(Measure(0, 1))

    result_1 = circuit_1.run(1024).result

    assert result_1["00"] > 215
    assert result_1["11"] > 215
    assert result_1["10"] > 215
    assert result_1["01"] > 215
def test_swap_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(PauliX(0))
    circuit.add(SWAP(0, 1))
    circuit.add(Measure([0, 1]))
    job = circuit.run(1024)
    result = job.result
    assert result["11"] == 0
    assert result["00"] == 0
    assert result["01"] == 0
    assert result["10"] == 1024
Beispiel #24
0
def test_entanglement():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(Hadamard(0))
    circuit.add(CNOT(0, 1))
    circuit.add(Measure([0, 1]))
    job = circuit.run(1024)
    result = job.result
    assert result["01"] == 0
    assert result["10"] == 0
    assert result["00"] > 450
    assert result["11"] > 450
Beispiel #25
0
def test_pauliy_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliY(0))  # Can also use H()
    circuit.add(Measure())

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    # Accounting for random noise, results won't be exact
    assert result['0'] == 0
    assert result['1'] == 1024
Beispiel #26
0
def test_multi_hadamard():
    circuit = Circuit()
    circuit.add(Qubits(4))
    circuit.add(Hadamard(0))
    circuit.add(Hadamard(1))
    circuit.add(Hadamard(2))
    circuit.add(Hadamard(3))
    circuit.add(Measure([0, 1, 2, 3]))
    job = circuit.run(1024)
    result = job.result
    # All 16 states should be relatively equal probability
    assert len(result.counts) == 16
    assert max(result.counts.values()) - min(result.counts.values()) < 50
def test_cz_int():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(Hadamard(0))
    circuit.add(Hadamard(1))
    circuit.add(Cz(0, 1))
    circuit.add(Measure([0, 1]))
    job = circuit.run(1000)
    result = job.result
    assert result["00"] > 210
    assert result["01"] > 210
    assert result["10"] > 210
    assert result["11"] > 210
Beispiel #28
0
def test_unitary_symmetry_does_nothing():
    symmetric_circuit_1 = Circuit()
    symmetric_circuit_1.add(Qubits(2))
    symmetric_circuit_1.add(Hadamard(0))
    symmetric_circuit_1.add(Hadamard(0))
    symmetric_circuit_1.add(CNOT(0, 1))
    symmetric_circuit_1.add(CNOT(0, 1))
    symmetric_circuit_1.add(Measure([0, 1]))

    symmetric_circuit_2 = Circuit()
    symmetric_circuit_2.add(Qubits(2, state=1))
    symmetric_circuit_2.add(Hadamard(0))
    symmetric_circuit_2.add(CNOT(0, 1))
    symmetric_circuit_2.add(CNOT(0, 1))
    symmetric_circuit_2.add(Hadamard(0))
    symmetric_circuit_2.add(Measure([0, 1]))

    result_1 = symmetric_circuit_1.run(1024).result
    result_2 = symmetric_circuit_2.run(1024).result

    assert result_1.counts.get(0) == 1024
    assert result_2.counts.get(0) == 1024
def test_cz2_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(2))
    circuit_1.add(PauliX(0))
    circuit_1.add(Cz(0, 1))
    circuit_1.add(Measure(0, 1))

    result_1 = circuit_1.run(1024).result

    assert result_1["00"] == 0
    assert result_1["11"] == 0
    assert result_1["01"] == 1024
    assert result_1["10"] == 0
Beispiel #30
0
def test_ch_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(PauliX(0))
    circuit.add(CH(0, 1))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['11'] > 450
    assert result['00'] == 0
    assert result['10'] > 450
    assert result['01'] == 0