def SaveFeatureImages(img_file, data_file, feature_img_path): img = io.imread(img_file) name = os.path.basename(img_file) head, tail = os.path.splitext(name) h, w = img.shape block = True template = Bin2Template_Byte_TF(data_file, isLatent=True) mnt = template.minu_template[0].minutiae fname = os.path.join(unicode(feature_img_path), head + "_minu1.jpg") show.show_minutiae(img, mnt, block=block, fname=fname) mnt = template.minu_template[1].minutiae fname = os.path.join(unicode(feature_img_path), head + "_minu2.jpg") show.show_minutiae(img, mnt, block=block, fname=fname) mask = template.minu_template[0].mask fname = os.path.join(unicode(feature_img_path), head + "_ROI.jpg") show.show_mask(mask, img, fname=fname, block=block) OF = template.minu_template[0].oimg fname = os.path.join(unicode(feature_img_path), head + "_OF.jpg") show.show_orientation_field(img, OF, mask=mask, fname=fname) return
def demo_minutiae_extraction(img_path,minu_model_dir): img_files = glob.glob(img_path+'*.bmp') img_files.sort() minu_model = (minutiae_AEC.ImportGraph(minu_model_dir)) block = True for i, img_file in enumerate(img_files): if i<11: continue img = io.imread(img_file) name = os.path.basename(img_file) h, w = img.shape mask = np.ones((h,w),dtype=np.uint8) minu_thr = 0.3 texture_img = preprocessing.FastCartoonTexture(img) contrast_img = preprocessing.local_constrast_enhancement_gaussian(img) dir_map, fre_map = get_maps.get_maps_STFT(contrast_img, patch_size=64, block_size=16, preprocess=True) dict, spacing,_ = get_maps.construct_dictionary(ori_num=60) quality_map, fre_map = get_maps.get_quality_map_ori_dict(contrast_img, dict, spacing, dir_map=dir_map, block_size=16) enh_texture_img = filtering.gabor_filtering_pixel(contrast_img, dir_map + math.pi / 2, fre_map, mask=mask, block_size=16, angle_inc=3) mnt = minu_model.run(contrast_img, minu_thr=0.1) #mnt = minu_model.remove_spurious_minutiae(mnt, mask) #minutiae_sets.append(mnt) #fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg' show.show_minutiae(contrast_img, mnt, block=block, fname=None) mnt = minu_model.run(texture_img, minu_thr=0.1) # mnt = minu_model.remove_spurious_minutiae(mnt, mask) # minutiae_sets.append(mnt) # fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg' show.show_minutiae(texture_img, mnt, block=block, fname=None) print(i)
def feature_extraction_single_rolled(self, img_file, output_path=None, ppi=500): block_size = 16 if not os.path.exists(img_file): return None img = io.imread(img_file, s_grey=True) if ppi != 500: img = cv2.resize(img, (0, 0), fx=500.0 / ppi, fy=500.0 / ppi) img = preprocessing.adjust_image_size(img, block_size) if len(img.shape) > 2: img = rgb2gray(img) h, w = img.shape start = timeit.default_timer() mask = get_maps.get_quality_map_intensity(img) stop = timeit.default_timer() print('time for cropping : %f' % (stop - start)) start = timeit.default_timer() contrast_img = preprocessing.local_constrast_enhancement(img) mnt = self.minu_model.run_whole_image(contrast_img, minu_thr=0.1) stop = timeit.default_timer() minu_time = stop - start print('time for minutiae : %f' % (stop - start)) name = os.path.basename(img_file) show.show_minutiae(img, mnt, block=True) return None start = timeit.default_timer() des = descriptor.minutiae_descriptor_extraction( img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=256, patch_size=self.patch_size) stop = timeit.default_timer() print('time for descriptor : %f' % (stop - start)) dir_map, _ = get_maps.get_maps_STFT(img, patch_size=64, block_size=block_size, preprocess=True) blkH = h // block_size blkW = w // block_size minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) rolled_template = template.Template() rolled_template.add_minu_template(minu_template) start = timeit.default_timer() # texture templates stride = 16 x = np.arange(24, w - 24, stride) y = np.arange(24, h - 24, stride) virtual_minutiae = [] distFromBg = scipy.ndimage.morphology.distance_transform_edt(mask) for y_i in y: for x_i in x: if (distFromBg[y_i][x_i] <= 24): continue ofY = int(y_i / 16) ofX = int(x_i / 16) ori = -dir_map[ofY][ofX] virtual_minutiae.append([x_i, y_i, ori]) virtual_minutiae = np.asarray(virtual_minutiae) if len(virtual_minutiae) > 1000: virtual_minutiae = virtual_minutiae[:1000] print len(virtual_minutiae) if len(virtual_minutiae) > 3: virtual_des = descriptor.minutiae_descriptor_extraction( contrast_img, virtual_minutiae, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) texture_template = template.TextureTemplate( h=h, w=w, minutiae=virtual_minutiae, des=virtual_des, mask=mask) rolled_template.add_texture_template(texture_template) stop = timeit.default_timer() print('time for texture : %f' % (stop - start)) return rolled_template
def feature_extraction_single_latent_evaluation(self,img_file, mask_file, AEC_img_file,output_path = None ): img = io.imread(img_file) name = os.path.basename(img_file) AEC_img = io.imread(AEC_img_file) mask = io.imread(mask_file) h,w = mask.shape #mask = mask_dilation(mask, block_size=16) latent_template = template.Template() block = False minu_thr = 0.3 contrast_img = preprocessing.local_constrast_enhancement(img) # Two ways for orientation field estimation # Use the AEC_img and STFT on texture image dir_map_sets = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) dir_map, fre_map = get_maps.get_maps_STFT(texture_img, patch_size=64, block_size=16, preprocess=True) dir_map_sets.append(dir_map) blkH, blkW = dir_map.shape dir_map, fre_map = get_maps.get_maps_STFT(AEC_img, patch_size=64, block_size=16, preprocess=True) dir_map_sets.append(dir_map) #dir_map, fre_map = get_maps.get_maps_STFT(contrast_img, patch_size=64, block_size=16, preprocess=True) #dir_map_sets.append(dir_map) # based on the OF, we can use texture image and AEC image for frequency field estimation fre_map_sets = [] quality_map, fre_map = get_maps.get_quality_map_ori_dict(AEC_img, self.dict, self.spacing, dir_map=dir_map_sets[0], block_size=16) fre_map_sets.append(fre_map) quality_map, fre_map = get_maps.get_quality_map_ori_dict(contrast_img, self.dict, self.spacing, dir_map=dir_map_sets[1], block_size=16) fre_map_sets.append(fre_map) descriptor_imgs = [texture_img] descriptor_imgs.append(contrast_img) enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map_sets[0], mask=mask, block_size=16, angle_inc=3) descriptor_imgs.append(enh_texture_img) enh_contrast_img = filtering.gabor_filtering_pixel(contrast_img, dir_map + math.pi / 2, fre_map_sets[1], mask=mask, block_size=16, angle_inc=3) descriptor_imgs.append(enh_contrast_img) minutiae_sets = [] mnt = self.minu_model.run(texture_img, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg' show.show_minutiae(texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(contrast_img, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_contrast_img.jpeg' show.show_minutiae(contrast_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_texture_img, minu_thr=minu_thr) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_texture_img.jpeg' show.show_minutiae(enh_texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_contrast_img, minu_thr=minu_thr) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_contrast_img.jpeg' show.show_minutiae(enh_contrast_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(AEC_img, minu_thr=minu_thr) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae(AEC_img, mnt, block=block, fname=fname) for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction(des_img, mnt, self.patch_types, self.des_models, self.patchIndexV,batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map_sets[1], mask=mask) latent_template.add_minu_template(minu_template) return latent_template
def feature_extraction_single_latent(self,img_file, output_path = None, show_processes=False ): #block = True img = io.imread(img_file) name = os.path.basename(img_file) mask_CNN,_ = self.ROI_model.run(img) h,w = mask_CNN.shape #mask = mask_dilation(mask, block_size=16) latent_template = template.Template() minu_thr = 0.3 # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) descriptor_imgs.append(texture_img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian(img) quality_map, _, _ = get_maps.get_quality_map_dict(texture_img, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) quality_map_pixel = cv2.resize(quality_map, (0, 0), fx=16, fy=16) #plt.imshow(quality_map_pixel,cmap='gray') #plt.show() mask_coarse = quality_map_pixel > 0.3 mask_coarse = mask_coarse.astype(np.int) mask = mask_coarse * mask_CNN # show.show_mask(mask_CNN, img, fname='mask_RCNN.jpeg',block=block) # show.show_mask(mask_coarse,img,fname = 'mask_coarse.jpeg',block=block) # show.show_mask(mask, img, fname='mask.jpeg',block=block) #show.show_mask(mask, AEC_img, fname='mask_AEC.jpeg',block=block) # plt.imshow(AEC_img,cmap = 'gray') # plt.show(block=block) # plt.close() #show.show_mask(mask_CNN, img, fname='mask_RCNN.jpeg',block=block) # AEC_img[mask == 0] = 128 # plt.imshow(AEC_img, cmap='gray') # plt.show(block=block) # plt.close() AEC_img = self.enhancement_model.run(texture_img) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict(AEC_img, self.dict_all, self.dict_ori,self.dict_spacing, block_size=16, process=False) blkH, blkW = dir_map.shape if show_processes: show.show_orientation_field(img, dir_map,mask = mask,fname='OF.jpeg') # mnt = self.minu_model.run(contrast_img_mean, minu_thr=0.1) # mnt = self.remove_spurious_minutiae(mnt, mask) # minutiae_sets.append(mnt) # # fname = output_path + os.path.splitext(name)[0] + '_contrast_img_mean.jpeg' # show.show_minutiae(contrast_img_mean, mnt, block=block, fname=fname) enh_contrast_img = filtering.gabor_filtering_pixel(contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=mask, block_size=16, angle_inc=3) enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map, mask=mask, block_size=16, angle_inc=3) if show_processes: show.show_image(texture_img, mask=mask, block=True, fname='cropped_texture_image.jpeg') show.show_image(AEC_img, mask=mask, block=True, fname='cropped_AEC_image.jpeg') show.show_image(enh_contrast_img, mask=mask, block=True, fname='cropped_enh_image.jpeg') #np.ones((h, w), np.int) descriptor_imgs.append(enh_contrast_img) quality_map2, _ , _ = get_maps.get_quality_map_dict(enh_contrast_img, self.dict_all,self.dict_ori,self.dict_spacing, block_size=16, process=False) quality_map_pixel2 = cv2.resize(quality_map2, (0, 0), fx=16, fy=16) mask2 = quality_map_pixel2 > 0.50 #mask = mask*mask2 minutiae_sets = [] mnt = self.minu_model.run(contrast_img_guassian, minu_thr=0.05) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) if show_processes: fname = 'minutiae_texture_img.jpeg' show.show_minutiae(texture_img, mnt, mask=mask,block=block, fname=fname) mnt = self.minu_model.run(AEC_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask2) minutiae_sets.append(mnt) if show_processes: fname = 'minutiae_AEC_img.jpeg' show.show_minutiae(AEC_img, mnt, mask=mask, block=block, fname=fname) mnt = self.minu_model.run(enh_contrast_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask2) minutiae_sets.append(mnt) if show_processes: fname = 'minutiae_enh_contrast_img.jpeg' show.show_minutiae(enh_contrast_img, mnt, mask=mask,block=block, fname=fname) mnt = self.minu_model.run(enh_texture_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask2) minutiae_sets.append(mnt) # minutiae template 1 des = descriptor.minutiae_descriptor_extraction(texture_img, minutiae_sets[0], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[0], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) # minutiae template 2 des = descriptor.minutiae_descriptor_extraction(texture_img, minutiae_sets[1], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[1], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) # minutiae template 3 des = descriptor.minutiae_descriptor_extraction(enh_texture_img, minutiae_sets[2], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[2], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) # minutiae template 4 des = descriptor.minutiae_descriptor_extraction(enh_texture_img, minutiae_sets[3], self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=minutiae_sets[3], des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) return latent_template
def feature_extraction_single_latent_evaluation_AEM18T(self,img_file, mask_file, AEC_img_file,output_path = None ): img = io.imread(img_file) name = os.path.basename(img_file) AEC_img = io.imread(AEC_img_file) mask_CNN = io.imread(mask_file) h,w = mask_CNN.shape #mask = mask_dilation(mask, block_size=16) latent_template = template.Template() block = False minu_thr = 0.3 # template set 1: no ROI and enhancement are required # texture image is used for coase segmentation descriptor_imgs = [] texture_img = preprocessing.FastCartoonTexture(img, sigma=2.5, show=False) descriptor_imgs.append(texture_img) contrast_img_mean = preprocessing.local_constrast_enhancement(img) contrast_img_guassian = preprocessing.local_constrast_enhancement_gaussian(img) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict(texture_img, self.dict_all, self.dict_ori, self.dict_spacing, block_size=16, process=False) quality_map_pixel = cv2.resize(quality_map, (0, 0), fx=16, fy=16) mask_coarse = quality_map_pixel > 0.3 mask_coarse = mask_coarse.astype(np.int) quality_map, dir_map, fre_map = get_maps.get_quality_map_dict(AEC_img, self.dict_all, self.dict_ori,self.dict_spacing, block_size=16, process=False) minutiae_sets = [] mnt = self.minu_model.run(texture_img, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask_coarse) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_texture_img.jpeg' show.show_minutiae(texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(contrast_img_mean, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask_coarse) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_contrast_img_mean.jpeg' show.show_minutiae(contrast_img_mean, mnt, block=block, fname=fname) mnt = self.minu_model.run(contrast_img_guassian, minu_thr=0.1) mnt = self.remove_spurious_minutiae(mnt, mask_coarse) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_contrast_img_guassian.jpeg' show.show_minutiae(contrast_img_guassian, mnt, block=block, fname=fname) #show.show_orientation_field(AEC_img,dir_map) enh_texture_img = filtering.gabor_filtering_pixel(texture_img, dir_map + math.pi / 2, fre_map, mask=np.ones((h, w), np.int), block_size=16, angle_inc=3) descriptor_imgs.append(enh_texture_img) enh_constrast_img = filtering.gabor_filtering_pixel(contrast_img_guassian, dir_map + math.pi / 2, fre_map, mask=np.ones((h,w),np.int), block_size=16, angle_inc=3) descriptor_imgs.append(enh_constrast_img) quality_map2, _ , _ = get_maps.get_quality_map_dict(enh_texture_img, self.dict_all,self.dict_ori,self.dict_spacing, block_size=16, process=False) quality_map_pixel2 = cv2.resize(quality_map2, (0, 0), fx=16, fy=16) mask = quality_map_pixel2 > 0.55 mask = mask.astype(np.int) mask = mask_coarse * mask mask = mask * mask_CNN mnt = self.minu_model.run(AEC_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_AEC_img.jpeg' show.show_minutiae(AEC_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_texture_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_texture_img.jpeg' show.show_minutiae(enh_texture_img, mnt, block=block, fname=fname) mnt = self.minu_model.run(enh_constrast_img, minu_thr=0.3) mnt = self.remove_spurious_minutiae(mnt, mask) minutiae_sets.append(mnt) fname = output_path + os.path.splitext(name)[0] + '_enh_constrast_img.jpeg' show.show_minutiae(enh_constrast_img, mnt, block=block, fname=fname) blkH, blkW = dir_map.shape for mnt in minutiae_sets: for des_img in descriptor_imgs: des = descriptor.minutiae_descriptor_extraction(des_img, mnt, self.patch_types, self.des_models, self.patchIndexV, batch_size=128) minu_template = template.MinuTemplate(h=h, w=w, blkH=blkH, blkW=blkW, minutiae=mnt, des=des, oimg=dir_map, mask=mask) latent_template.add_minu_template(minu_template) return latent_template