Beispiel #1
0
def draw():
    t_now = util.timestamp(ms=True)

    ctx.translate(-1., -0.85, -1.5)        

    ctx.rotate(*rotation_x)
    ctx.rotate(*rotation_y)

    colors = (1., 1., 1., 1.), (.7, 1., 1., 1.), (1., .7, .7, 1.), 
    for s, sensor in enumerate(list(sensor_data)):
        samples = sensor_data[sensor]
        if len(samples):
            # x = [((t_now - sample[0]) / 10.0, (sample[1][0] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]
            # y = [((t_now - sample[0]) / 10.0, (sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]
            # z = [((t_now - sample[0]) / 10.0, (sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]

            ts = [(t_now - sample[0]) / 10.0 for sample in samples]
            ys = [(sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0]) for sample in samples]
            zs = [(sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0]) - 0.5 for sample in samples]

            # ys = list(sp.smooth(sp.remove_shots(ys)))
            # zs = list(sp.smooth(sp.remove_shots(zs)))

            # ys = list(sp.remove_shots(ys))
            # zs = list(sp.remove_shots(zs))
            ys = (np.array(ys) * 2.0) - 0.5
            zs = (np.array(zs) * 2.0) - 0.5
            ys = sp.smooth(ys, 20)
            zs = sp.smooth(zs, 20)

            # combo_yz = [((t_now - sample[0]) / 10.0, (sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0]), ((sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0])) - 0.5) for sample in list(samples)]
            combo_yz = [(ts[i], ys[i], zs[i]) for i in range(0, len(ys))]
            ctx.lines3D(combo_yz, color=colors[s], thickness=2.0)
Beispiel #2
0
def optimal_gauss_kernel_size(train, optimize_steps, progress=None):
    """ Return the optimal kernel size for a spike density estimation
    of a spike train for a gaussian kernel. This function takes a single
    spike train, which can be a superposition of multiple spike trains
    (created with :func:`collapsed_spike_trains`) that should be included
    in a spike density estimation.

    Implements the algorithm from
    (Shimazaki, Shinomoto. Journal of Computational Neuroscience. 2010).

    :param train: The spike train for which the kernel
        size should be optimized.
    :type train: :class:`neo.core.SpikeTrain`
    :param optimize_steps: Array of kernel sizes to try (the best of
        these sizes will be returned).
    :type optimize_steps: Quantity 1D
    :param progress: Set this parameter to report progress. Will be
        advanced by len(`optimize_steps`) steps.
    :type progress: :class:`.progress_indicator.ProgressIndicator`
    :returns: Best of the given kernel sizes
    :rtype: Quantity scalar
    """
    if not progress:
        progress = ProgressIndicator()

    x = train.rescale(optimize_steps.units)

    N = len(train)
    C = {}

    sampling_rate = 1024.0 / (x.t_stop - x.t_start)
    dt = float(1.0 / sampling_rate)
    y_hist = tools.bin_spike_trains({0: [x]}, sampling_rate)[0][0][0]
    y_hist = sp.asfarray(y_hist) / N / dt
    for step in optimize_steps:
        s = float(step)
        yh = sigproc.smooth(y_hist,
                            sigproc.GaussianKernel(2 * step),
                            sampling_rate,
                            num_bins=2048,
                            ensure_unit_area=True) * optimize_steps.units

        # Equation from Matlab code, 7/2012
        c = (sp.sum(yh**2) * dt - 2 * sp.sum(yh * y_hist) * dt +
             2 * 1 / sp.sqrt(2 * sp.pi) / s / N)
        C[s] = c * N * N
        progress.step()

    # Return kernel size with smallest cost
    return min(C, key=C.get) * optimize_steps.units
Beispiel #3
0
def optimal_gauss_kernel_size(train, optimize_steps, progress=None):
    """ Return the optimal kernel size for a spike density estimation
    of a spike train for a gaussian kernel. This function takes a single
    spike train, which can be a superposition of multiple spike trains
    (created with :func:`collapsed_spike_trains`) that should be included
    in a spike density estimation.

    Implements the algorithm from
    (Shimazaki, Shinomoto. Journal of Computational Neuroscience. 2010).

    :param train: The spike train for which the kernel
        size should be optimized.
    :type train: :class:`neo.core.SpikeTrain`
    :param optimize_steps: Array of kernel sizes to try (the best of
        these sizes will be returned).
    :type optimize_steps: Quantity 1D
    :param progress: Set this parameter to report progress. Will be
        advanced by len(`optimize_steps`) steps.
    :type progress: :class:`.progress_indicator.ProgressIndicator`
    :returns: Best of the given kernel sizes
    :rtype: Quantity scalar
    """
    if not progress:
        progress = ProgressIndicator()

    x = train.rescale(optimize_steps.units)

    N = len(train)
    C = {}

    sampling_rate = 1024.0 / (x.t_stop - x.t_start)
    dt = float(1.0 / sampling_rate)
    y_hist = tools.bin_spike_trains({0: [x]}, sampling_rate)[0][0][0]
    y_hist = sp.asfarray(y_hist) / N / dt
    for step in optimize_steps:
        s = float(step)
        yh = sigproc.smooth(
            y_hist, sigproc.GaussianKernel(2 * step), sampling_rate, num_bins=2048,
            ensure_unit_area=True) * optimize_steps.units

        # Equation from Matlab code, 7/2012
        c = (sp.sum(yh ** 2) * dt -
             2 * sp.sum(yh * y_hist) * dt +
             2 * 1 / sp.sqrt(2 * sp.pi) / s / N)
        C[s] = c * N * N
        progress.step()

    # Return kernel size with smallest cost
    return min(C, key=C.get) * optimize_steps.units
Beispiel #4
0
signals = []
labels = list(streams.keys())
log.info("LABELS %s" % labels)
for label in labels:
    log.info(label)
    ts = tses[label]
    ts = [t_min] + ts + [t_max]
    values = [d[label] if label in d else None for d in streams[label]]
    values = [values[0]] + values + [values[-1]]
    values = sp.remove_shots(values, nones=True)  # repair missing values
    signal = sp.resample(ts, values)
    num_samples = len(signal)
    sample_rate = num_samples / duration
    signal = sp.normalize(signal)
    signal = sp.smooth(signal, 15)
    signals.append(signal)    

log.info("Drawing...")
ctx = drawing.Context(1200, 500, margin=20, hsv=True)
for b in range(12):
    ctx.line(b / 12, 0, b / 12, 1, stroke=(0.5, 0.5, 0.5, 0.5), thickness=0.5)
ctx.line(1, 0, 1, 1, stroke=(0.5, 0.5, 0.5, 0.5), thickness=0.5)
for i, signal in enumerate(signals):
    color = i / (len(signals) + 4) + .1, 1., .8, 1.
    ctx.plot(signal, stroke=color, thickness=1.5)
    ctx.line(10 / ctx.width, 1 - ((10 + (i * 10)) / ctx.height), 30 / ctx.width, 1 - ((10 + (i * 10)) / ctx.height), stroke=color, thickness=2)
    ctx.label(35 / ctx.width, 1 - ((13 + (i * 10)) / ctx.height), labels[i].upper(), size=8)            

ctx.output("charts/")
def generate():

    # load data into t and count arrays per species
    species = OrderedDict()
    start_t = util.timestamp(util.parse_date(str(config['start'])))
    end_t = util.timestamp(util.parse_date(str(config['end'])))
    max_count = 0
    with open("data.csv") as f:
        data = csv.reader(f)
        for r, row in enumerate(data):
            if r == 0:
                continue
            plot = row[1]
            name = row[2]
            if len(config['species_list']
                   ) and name not in config['species_list']:
                continue
            dt = datetime.datetime(int(row[3]), 1,
                                   1) + datetime.timedelta(int(row[4]) - 1)
            t = util.timestamp(dt)
            if t < start_t or t > end_t:
                continue
            count = 0 if row[5] == "NA" else int(row[5])
            if count > max_count:
                max_count = count
            if name not in species:
                species[name] = {'ts': [start_t, t - 1], 'counts': [0, 0]}
            species[name]['ts'].append(t)
            species[name]['counts'].append(count)
    species = OrderedDict(sorted(species.items()))
    print("--> loaded")

    # add a zero count at the start and end of every year
    yts = [
        util.timestamp(datetime.datetime(y, 1, 1)) for y in range(1974, 2017)
    ]
    for name in species:
        ts = species[name]['ts']
        for yt in yts:
            i = 0
            while i < len(ts) and ts[i] < yt:
                i += 1
            if i > 0:
                end_season_t = ts[i - 1]
                if i < len(ts):
                    start_season_t = ts[i]
                    ts.insert(i, start_season_t - config['tail'])
                    species[name]['counts'].insert(i, 0)
                ts.insert(i, end_season_t + config['tail'])
                species[name]['counts'].insert(i, 0)
        species[name]['ts'].append(end_t)
        species[name]['counts'].append(0)
    print("--> onsets added")

    # create and draw signals
    signals = []
    names = []
    i = 0
    for name, data in species.items():
        print("Processing %s..." % name)

        # create signal from bloom counts
        signal = sp.resample(data['ts'], data['counts'])
        if config['normalize']:
            signal = sp.normalize(signal)
        else:
            signal = sp.normalize(signal, 0, max_count)
        signal = sp.smooth(signal, size=8)
        signal = sp.limit(
            signal,
            max(signal))  # get rid of noise below 0 for onset detection

        # add spikes for peaks
        if config['peak_spikes']:
            peaks, valleys = sp.detect_peaks(signal, lookahead=50)
            peak_signal = np.zeros(len(signal))
            for peak in peaks:
                peak_signal[peak[0]] = 1.0
            signal += peak_signal

        # add spikes for onsets
        if config['onset_spikes']:
            onsets = sp.detect_onsets(signal)
            onset_signal = np.zeros(len(signal))
            for onset in onsets:
                onset_signal[onset] = 0.5
                onset_signal[onset + 1] = 0.4
                onset_signal[onset + 2] = 0.25
            signal += onset_signal

        # limit
        signal = sp.limit(signal, 1.0)
        signal *= 0.9  # hack, just controlling gain
        signals.append(signal)

        names.append(name)

        i += 1

    return signals, names
Beispiel #6
0
def process_walk(walk_id, force=False):

    if not model.process_check(walk_id):
        log.error("Walk %s already processed" % walk_id)
        if force:
            log.info("--> forcing...")
            model.remove_sequence(walk_id)
        else:
            return
    log.info("Processing walk %s" % walk_id)

    # fetch data
    data = model.fetch_accels(walk_id)
    data = [(reading['t'], reading['x'], reading['y'], reading['z'])
            for reading in data]

    # let's sample every millisecond, so the time of the last reading is how many samples we need
    data = np.array(data)
    ts = data[:, 0]
    total_samples = int(ts[-1])

    # need at least 10s of data
    # add 2000 for trimming at nd
    if total_samples < 10000 + 2000:
        log.info("No footsteps detected (too short)")
        model.hide(walk_id)
        return

    # resample the values
    xs = sp.resample(ts, data[:, 1], total_samples)
    ys = sp.resample(ts, data[:, 2], total_samples)
    zs = sp.resample(ts, data[:, 3], total_samples)

    # skip for accelerometer startup and for phone out of pocket at end
    skipin, skipout = 0, 2000
    xs = xs[skipin:-skipout]
    ys = ys[skipin:-skipout]
    zs = zs[skipin:-skipout]
    total_samples -= (skipin + skipout)
    log.info("TOTAL SAMPLES %s (%fs)" % (total_samples,
                                         (total_samples / 1000.0)))

    # get 3d magnitude (not RMS) -- orientation shouldnt matter
    ds = np.sqrt(np.power(xs, 2) + np.power(ys, 2) + np.power(zs, 2))

    # prep the raw values for display
    # normalize the values to a given range  (this is Gs)
    MIN = -10.0
    MAX = 10.0
    xs = (xs - MIN) / (MAX - MIN)
    ys = (ys - MIN) / (MAX - MIN)
    zs = (zs - MIN) / (MAX - MIN)
    # smooth them
    xs = sp.smooth(xs, 300)
    ys = sp.smooth(ys, 300)
    zs = sp.smooth(zs, 300)

    # process the magnitude signal
    ds = sp.smooth(ds, 500)
    ds = np.clip(ds, -10.0, 10.0)  # limit the signal to +-10 Gs
    ds = sp.normalize(ds)
    ds = 1 - ds
    ds = sp.compress(ds, 3.0)
    ds = sp.normalize(ds)

    # detect peaks
    peaks, valleys = sp.detect_peaks(ds, lookahead=50, delta=0.10)
    peaks = np.array(peaks)
    valleys = np.array(valleys)
    log.info("PEAKS %s" % len(peaks))
    if not len(peaks):
        log.info("No footsteps detected")
        model.hide(walk_id)
        return

    # get foot separator line
    fxs = [int(peak[0]) for peak in peaks]
    fys = [peak[1] for peak in peaks]
    avs = np.average([peak[1] for peak in peaks])
    fys[0] = avs  # it's going to start with a peak, so we need to bring it up or down accordingly
    fxs.append(total_samples - 1)
    fys.append(avs)
    fs = sp.resample(fxs, fys, total_samples)
    fs = sp.smooth(fs, 3000)

    # print out
    log.info("Saving sequence (%s)..." % walk_id)
    sequence = []
    for p, peak in enumerate(peaks):
        foot = 'right' if peak[1] > fs[int(peak[0])] else 'left'
        t = peak[0]
        t += 250  # turns out the peak hits just before the step
        sequence.append((t, foot))

    # fix triples
    for i in range(len(sequence) - 2):
        if sequence[i][1] == sequence[i + 1][1] == sequence[i + 2][1]:
            sequence[i + 1] = (sequence[i + 1][0],
                               'right') if sequence[i + 1][1] == 'left' else (
                                   sequence[i + 1][0], 'left')

    model.insert_sequence(walk_id, sequence)

    plot(walk_id, xs, ys, zs, ds, peaks, total_samples, fs)
def generate():

    # load data into t and count arrays per species
    species = OrderedDict()
    start_t = util.timestamp(util.parse_date(str(config['start'])))
    end_t = util.timestamp(util.parse_date(str(config['end'])))
    max_count = 0
    with open("data.csv") as f:
        data = csv.reader(f)
        for r, row in enumerate(data):
            if r == 0:
                continue
            plot = row[1]        
            name = row[2]        
            if len(config['species_list']) and name not in config['species_list']:
                continue
            dt = datetime.datetime(int(row[3]), 1, 1) + datetime.timedelta(int(row[4]) - 1)
            t = util.timestamp(dt)
            if t < start_t or t > end_t:
                continue
            count = 0 if row[5] == "NA" else int(row[5]) 
            if count > max_count:
                max_count = count
            if name not in species:
                species[name] = {'ts': [start_t, t - 1], 'counts': [0, 0]}
            species[name]['ts'].append(t)
            species[name]['counts'].append(count)
    species = OrderedDict(sorted(species.items()))
    print("--> loaded")


    # add a zero count at the start and end of every year
    yts = [util.timestamp(datetime.datetime(y, 1, 1)) for y in range(1974, 2017)]
    for name in species:
        ts = species[name]['ts']
        for yt in yts:
            i = 0        
            while i < len(ts) and ts[i] < yt:
                i += 1
            if i > 0:
                end_season_t = ts[i-1]
                if i < len(ts):
                    start_season_t = ts[i]
                    ts.insert(i, start_season_t - config['tail'])
                    species[name]['counts'].insert(i, 0)
                ts.insert(i, end_season_t + config['tail'])
                species[name]['counts'].insert(i, 0)
        species[name]['ts'].append(end_t)
        species[name]['counts'].append(0)
    print("--> onsets added")


    # create and draw signals
    signals = []
    names = []
    i = 0
    for name, data in species.items():
        print("Processing %s..." % name)

        # create signal from bloom counts
        signal = sp.resample(data['ts'], data['counts'])
        if config['normalize']:
            signal = sp.normalize(signal)
        else:
            signal = sp.normalize(signal, 0, max_count)    
        signal = sp.smooth(signal, size=8)
        signal = sp.limit(signal, max(signal))  # get rid of noise below 0 for onset detection

        # add spikes for peaks
        if config['peak_spikes']:
            peaks, valleys = sp.detect_peaks(signal, lookahead=50)
            peak_signal = np.zeros(len(signal))    
            for peak in peaks:
                peak_signal[peak[0]] = 1.0
            signal += peak_signal

        # add spikes for onsets
        if config['onset_spikes']:
            onsets = sp.detect_onsets(signal)
            onset_signal = np.zeros(len(signal))    
            for onset in onsets:
                onset_signal[onset] = 0.5
                onset_signal[onset+1] = 0.4
                onset_signal[onset+2] = 0.25
            signal += onset_signal

        # limit
        signal = sp.limit(signal, 1.0)
        signal *= 0.9   # hack, just controlling gain
        signals.append(signal)   

        names.append(name)
   
        i += 1

    return signals, names
Beispiel #8
0
def get_speed_series(trajectories, slices):
    return [
        np.insert(sigproc.smooth(get_trajectory_speed(trajectories[s, 0:2])),
                  0, 0) for s in slices
    ]
Beispiel #9
0
def draw():
    t_now = util.timestamp(ms=True)   

    # ctx.translate(0, 0, -1)
    # ctx.translate(-1.5, -0.5, -1)
    # ctx.translate(-1.3, -0.85, -2)    
    ctx.translate(-1., -0.85, -1.5)        

    ctx.rotate(*rotation_x)
    ctx.rotate(*rotation_y)

    # axes
    # ctx.line3D(-.25, 0, 0, .25, 0, 0, color=(1., 1., 0., 1.))
    # ctx.line3D(0, -.25, 0, 0, .25, 0, color=(0., 1., 1., 1.))
    # ctx.line3D(0, 0, -.25, 0, 0, .25, color=(1., 0., 1., 1.))


    # for (start_t, stop_t) in sessions:
    #     if stop_t is None:
    #         stop_t = t_now        
    #     if t_now - stop_t > 10.0:
    #         continue        
    #     # ctx.line((t_now - stop_t) / 10.0, .99, (t_now - start_t) / 10.0, .99, color=(1., 0., 0., .2), thickness=10.0)    
    #     x1 = (t_now - stop_t) / 10.0
    #     x2 = (t_now - start_t) / 10.0
    #     ctx.rect(x1, 0.0, x2 - x1, 1.0, color=(1., 0., 0., 0.25))

    # for s, (sensor, (t, rssi)) in enumerate(sensor_rssi.items()):
    #     if t_now - t > 3:
    #         bar = 0.01
    #     else:
    #         bar = 1.0 - (max(abs(rssi) - 25, 0) / 100)
    #     x = (20 + (s * 20)) / ctx.width
    #     ctx.line(x, .1, x, (bar * 0.9) + .1, color=(0., 0., 0., 0.5), thickness=10)
    #     if sensor not in labels:
    #         print("Adding label for sensor %s" % sensor)
    #         labels.append(sensor)
    #         ctx.label(x, .05, str(sensor), font="Monaco", size=10, width=10, center=True)

    colors = (1., 1., 1., 1.), (.7, 1., 1., 1.), (1., .7, .7, 1.), 
    for s, sensor in enumerate(list(sensor_data)):
        samples = sensor_data[sensor]
        if len(samples):
            # x = [((t_now - sample[0]) / 10.0, (sample[1][0] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]
            # y = [((t_now - sample[0]) / 10.0, (sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]
            # z = [((t_now - sample[0]) / 10.0, (sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]

            ts = [(t_now - sample[0]) / 10.0 for sample in samples]
            ys = [(sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0]) for sample in samples]
            zs = [(sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0]) - 0.5 for sample in samples]

            # ys = list(sp.smooth(sp.remove_shots(ys)))
            # zs = list(sp.smooth(sp.remove_shots(zs)))

            # ys = list(sp.remove_shots(ys))
            # zs = list(sp.remove_shots(zs))
            ys = (np.array(ys) * 2.0) - 0.5
            zs = (np.array(zs) * 2.0) - 0.5
            ys = sp.smooth(ys, 20)
            zs = sp.smooth(zs, 20)

            # combo_yz = [((t_now - sample[0]) / 10.0, (sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0]), ((sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0])) - 0.5) for sample in list(samples)]
            combo_yz = [(ts[i], ys[i], zs[i]) for i in range(0, len(ys))]
            ctx.lines3D(combo_yz, color=colors[s], thickness=2.0)
Beispiel #10
0
def process_walk(walk_id, force=False):

    if not model.process_check(walk_id):
        log.error("Walk %s already processed" % walk_id)        
        if force:
            log.info("--> forcing...")
            model.remove_sequence(walk_id)
        else:
            return
    log.info("Processing walk %s" % walk_id)

    # fetch data
    data = model.fetch_accels(walk_id)
    data = [(reading['t'], reading['x'], reading['y'], reading['z']) for reading in data]

    # let's sample every millisecond, so the time of the last reading is how many samples we need
    data = np.array(data)
    ts = data[:,0]
    total_samples = int(ts[-1])

    # need at least 10s of data
    # add 2000 for trimming at nd
    if total_samples < 10000 + 2000: 
        log.info("No footsteps detected (too short)")
        model.hide(walk_id)        
        return

    # resample the values
    xs = sp.resample(ts, data[:,1], total_samples)
    ys = sp.resample(ts, data[:,2], total_samples)
    zs = sp.resample(ts, data[:,3], total_samples)

    # skip for accelerometer startup and for phone out of pocket at end 
    skipin, skipout = 0, 2000
    xs = xs[skipin:-skipout]
    ys = ys[skipin:-skipout]
    zs = zs[skipin:-skipout]
    total_samples -= (skipin + skipout)
    log.info("TOTAL SAMPLES %s (%fs)" % (total_samples, (total_samples / 1000.0)))

    # get 3d magnitude (not RMS) -- orientation shouldnt matter
    ds = np.sqrt(np.power(xs, 2) + np.power(ys, 2) + np.power(zs, 2))    

    # prep the raw values for display
    # normalize the values to a given range  (this is Gs)
    MIN = -10.0
    MAX = 10.0
    xs = (xs - MIN) / (MAX - MIN)
    ys = (ys - MIN) / (MAX - MIN)
    zs = (zs - MIN) / (MAX - MIN)
    # smooth them
    xs = sp.smooth(xs, 300)
    ys = sp.smooth(ys, 300)
    zs = sp.smooth(zs, 300)

    # process the magnitude signal
    ds = sp.smooth(ds, 500)
    ds = np.clip(ds, -10.0, 10.0)   # limit the signal to +-10 Gs
    ds = sp.normalize(ds)
    ds = 1 - ds
    ds = sp.compress(ds, 3.0)
    ds = sp.normalize(ds)

    # detect peaks
    peaks, valleys = sp.detect_peaks(ds, lookahead=50, delta=0.10)
    peaks = np.array(peaks)
    valleys = np.array(valleys)
    log.info("PEAKS %s" % len(peaks))
    if not len(peaks):
        log.info("No footsteps detected")
        model.hide(walk_id)
        return

    # get foot separator line
    fxs = [int(peak[0]) for peak in peaks]
    fys = [peak[1] for peak in peaks]
    avs = np.average([peak[1] for peak in peaks])
    fys[0] = avs    # it's going to start with a peak, so we need to bring it up or down accordingly
    fxs.append(total_samples-1)
    fys.append(avs)
    fs = sp.resample(fxs, fys, total_samples)
    fs = sp.smooth(fs, 3000)

    # print out
    log.info("Saving sequence (%s)..." % walk_id)
    sequence = []
    for p, peak in enumerate(peaks):
        foot = 'right' if peak[1] > fs[int(peak[0])] else 'left'
        t = peak[0]
        t += 250   # turns out the peak hits just before the step
        sequence.append((t, foot))

    # fix triples
    for i in range(len(sequence) - 2):
        if sequence[i][1] == sequence[i+1][1] == sequence[i+2][1]:
            sequence[i+1] = (sequence[i+1][0], 'right') if sequence[i+1][1] == 'left' else (sequence[i+1][0], 'left')

    model.insert_sequence(walk_id, sequence)

    plot(walk_id, xs, ys, zs, ds, peaks, total_samples, fs)
Beispiel #11
0
def sample(draw=False):
    log.info("START SAMPLE")
    # get the time
    # dt = timeutil.get_dt(tz=config['tz'])
    # dt -= datetime.timedelta(days=300)  # time adjustment if necessary for testing
    # t_utc = timeutil.t_utc(dt)
    t_utc = timeutil.t_utc()
    dt = timeutil.get_dt(t_utc, tz=config['tz'])
    log.info("CURRENT TIME %s" % timeutil.get_string(t_utc, tz=config['tz']))

    # pull the last 24 hours worth -- we're going to normalize over that to set our dynamic levels
    log.info(config['sites'][config['sample']])

    # # this is the real-time last 24 hours
    # query = {'site': config['sample'], 't_utc': {'$gt': t_utc - 86400, '$lt': t_utc}}
    # log.info(query)
    # results = db.entries.find(query)

    # this is the last 24 hours we have
    # assume updating every 15 minutes, last 24 hours is the last 96 results
    results = db.entries.find({
        'site': config['sample']
    }).sort([('t_utc', DESCENDING)]).limit(96)
    results = list(results)
    results.reverse()
    log.info("%s results" % len(results))  # should be 96
    log.info(json.dumps(results[-1], indent=4,
                        default=lambda d: str(d)))  # show the last one

    # resample signals for each
    ts = [d['t_utc'] for d in results]
    duration = ts[-1] - ts[0]
    log.info("DURATION %s %s" % (duration, timeutil.format_seconds(duration)))
    signals = []
    rates = []
    labels = list(config['labels'].values())
    labels.sort()
    for i, label in enumerate(labels):
        # log.debug(label)
        try:
            values = [d[label] if label in d else None for d in results]
            values = sp.remove_shots(values,
                                     nones=True)  # repair missing values
            signal = sp.resample(ts, values)
            num_samples = len(signal)
            sample_rate = num_samples / duration
            rates.append(sample_rate)
            signal = sp.normalize(signal)
            signal = sp.smooth(signal, 15)
            signals.append(signal)
        except KeyError as e:
            log.error(log.exc(e))
            log.error(values)

    # draw if desired
    if draw:
        from housepy import drawing
        ctx = drawing.Context(1200, 500, margin=20, hsv=True)
        for i, label in enumerate(labels):
            color = i / len(labels), .8, .8, 1.
            signal = signals[i]
            ctx.plot(signal, stroke=color, thickness=2)
        ctx.output("charts/")

    # collapse into n-dimensional points
    points = []
    for i in range(len(signals[0])):
        point = [signal[i] for signal in signals]
        points.append(point)

    # PCA to 4D -- this takes whatever data we've got and maximizes variation for our four panels
    points = np.array(points)
    # log.debug("INPUT: %s POINTS, %s DIMENSIONS" % points.shape)
    points = decomposition.PCA(n_components=4).fit_transform(points)
    # log.debug("OUTPUT: %s POINTS, %s DIMENSIONS" % points.shape)

    # normalize each dimension independently, again amplifying dynamics
    points = np.column_stack((sp.normalize(points[:, 0], np.min(points[:, 0]),
                                           np.max(points[:, 0])),
                              sp.normalize(points[:, 1], np.min(points[:, 1]),
                                           np.max(points[:, 1])),
                              sp.normalize(points[:, 1], np.min(points[:, 1]),
                                           np.max(points[:, 2])),
                              sp.normalize(points[:, 2], np.min(points[:, 3]),
                                           np.max(points[:, 3]))))

    # now, for each time this is queried we want to return an interpolation between the last two points
    # this essentially implements a delay that closes in on the most recent query
    # ...hopefully to be refreshed with a new USGS reading when it gets there
    # if that reading doesnt come, it's ok, it just hovers there until we proceed
    # aaandd actually we want a couple of hours delay, because these come in at bulk every 1-4 hours

    # we know we have 96 points. four hours back is 16 points
    # interpolating between points -17 and -16 should give the most recent guaranteed smooth transitions
    # transduction takes time, pues

    point_a = points[-17]
    point_b = points[-16]
    # log.debug(point_a)
    # log.debug(point_b)

    # linear interpolation over 15 minutes
    position = (((dt.minute % 15) * 60) + dt.second) / (15 * 60)
    # log.debug(position)
    point = [(point_a[i] * (1.0 - position)) + (point_b[i] * position)
             for i in range(len(point_a))]

    log.info("RESULT: %s" % point)

    return point
Beispiel #12
0
print("DURATION %s %s" % (duration, strings.format_time(duration)))
signals = []
rates = []
labels = list(config['labels'].values())
labels.sort()
for i, label in enumerate(labels):
    log.info(label)
    try:
        values = [d[label] if label in d else None for d in results]
        values = sp.remove_shots(values, nones=True)  # repair missing values
        signal = sp.resample(ts, values)
        num_samples = len(signal)
        sample_rate = num_samples / duration
        rates.append(sample_rate)
        signal = sp.normalize(signal)
        signal = sp.smooth(signal, 15)
        signals.append(signal)        
        # color = colors[i]
        color = i / len(labels), .8, .8, 1.
        ctx.plot(signal, stroke=color, thickness=2)
        ctx.line(10 / ctx.width, 1 - ((10 + (i * 10)) / ctx.height), 30 / ctx.width, 1 - ((10 + (i * 10)) / ctx.height), stroke=color, thickness=2)
        ctx.label(35 / ctx.width, 1 - ((13 + (i * 10)) / ctx.height), label.upper(), size=8)            
    except KeyError as e:
        log.error(log.exc(e))
        log.error(values)

ctx.output("charts/")

points = []
for i in range(len(signals[0])):
    point = [signal[i] for signal in signals]
Beispiel #13
0
def main(session_id):
    result = db.branches.find({'session': session_id}).sort([('t', ASCENDING)])
    if not result.count():
        print("NO DATA!")
        exit()

    log.info("Start processing...")

    result = list(result)
    ts = [r['t'] for r in result]
    rms = [r['sample'][3] for r in result]
    duration = ts[-1] - ts[0]
    SAMPLING_RATE = 60 # hz
    log.info("DURATION %fs" % duration)

    signal = sp.resample(ts, rms, duration * SAMPLING_RATE)
    signal = sp.remove_shots(signal)
    signal = sp.normalize(signal)    
    signal = sp.smooth(signal, 15)

    # this number should match some lower frequency bound. ie, put this in hz.
    # the smaller the number, the more it will affect small motion
    # so this should be higher than the slowest motion we care about
    # ie, dont care about motion over 0.5hz, which is 120 samples
    trend = sp.smooth(signal, 120)  
    signal -= trend
    signal += 0.5

    atrend = sp.smooth(signal, 500)



    ## autocorrelation

    auto = sp.autocorrelate(signal)
    # this should be small -- if 60hz, fastest gesture would reasonably be half of that, so 30
    peaks, valleys = sp.detect_peaks(auto, 10)
    peaks = [peak for peak in peaks[1:] if peak[1] > 0.5]
    partials = []
    for peak in peaks:    
        frequency = SAMPLING_RATE / peak[0]
        partial = frequency * 1000
        partials.append([partial, float(peak[1])])
        log.info("%d samps\t%fhz\t%f magnitude\t%f map" % (peak[0], frequency, peak[1], partial))
    log.info(partials)    

    ctx = drawing.Context(2000, 750)
    ctx.plot(auto, stroke=(0.0, 0.0, 0.0, 1.0), thickness=2.0)
    for peak in peaks:
        x = peak[0] / len(auto)
        ctx.line(x, 0.0, x, peak[1], stroke=(1.0, 0.0, 0.0, 1.0))
    ctx.output("graphs")


    ## audio

    audio_signal = sp.make_audio(signal)
    spectrum(audio_signal, SAMPLING_RATE)

    AUDIO_RATE = 11025
    filename = "%s.wav" % util.timestamp()
    sound.write_audio(audio_signal, filename, AUDIO_RATE)
    subprocess.call(["open", filename])
    log.info("AUDIO DURATION %fs" % (duration / (AUDIO_RATE / SAMPLING_RATE)))

    ctx = drawing.Context(2000, 750)
    ctx.plot(signal, stroke=(0.0, 0.0, 0.0, 1.0), thickness=2.0)
    ctx.plot(trend, stroke=(1.0, 0.0, 0.0, 1.0), thickness=2.0)
    ctx.plot(atrend, stroke=(0.0, 0.0, 1.0, 1.0), thickness=2.0)
    ctx.output("graphs")


    log.info("--> done") # around 300ms
Beispiel #14
0
def draw():
    t_now = util.timestamp(ms=True)

    # ctx.translate(0, 0, -1)
    # ctx.translate(-1.5, -0.5, -1)
    # ctx.translate(-1.3, -0.85, -2)
    ctx.translate(-1., -0.85, -1.5)

    ctx.rotate(*rotation_x)
    ctx.rotate(*rotation_y)

    # axes
    # ctx.line3D(-.25, 0, 0, .25, 0, 0, color=(1., 1., 0., 1.))
    # ctx.line3D(0, -.25, 0, 0, .25, 0, color=(0., 1., 1., 1.))
    # ctx.line3D(0, 0, -.25, 0, 0, .25, color=(1., 0., 1., 1.))

    # for (start_t, stop_t) in sessions:
    #     if stop_t is None:
    #         stop_t = t_now
    #     if t_now - stop_t > 10.0:
    #         continue
    #     # ctx.line((t_now - stop_t) / 10.0, .99, (t_now - start_t) / 10.0, .99, color=(1., 0., 0., .2), thickness=10.0)
    #     x1 = (t_now - stop_t) / 10.0
    #     x2 = (t_now - start_t) / 10.0
    #     ctx.rect(x1, 0.0, x2 - x1, 1.0, color=(1., 0., 0., 0.25))

    # for s, (sensor, (t, rssi)) in enumerate(sensor_rssi.items()):
    #     if t_now - t > 3:
    #         bar = 0.01
    #     else:
    #         bar = 1.0 - (max(abs(rssi) - 25, 0) / 100)
    #     x = (20 + (s * 20)) / ctx.width
    #     ctx.line(x, .1, x, (bar * 0.9) + .1, color=(0., 0., 0., 0.5), thickness=10)
    #     if sensor not in labels:
    #         print("Adding label for sensor %s" % sensor)
    #         labels.append(sensor)
    #         ctx.label(x, .05, str(sensor), font="Monaco", size=10, width=10, center=True)

    colors = (1., 1., 1., 1.), (.7, 1., 1., 1.), (1., .7, .7, 1.),
    for s, sensor in enumerate(list(sensor_data)):
        samples = sensor_data[sensor]
        if len(samples):
            # x = [((t_now - sample[0]) / 10.0, (sample[1][0] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]
            # y = [((t_now - sample[0]) / 10.0, (sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]
            # z = [((t_now - sample[0]) / 10.0, (sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0])) for sample in list(samples)]

            ts = [(t_now - sample[0]) / 10.0 for sample in samples]
            ys = [(sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0])
                  for sample in samples]
            zs = [(sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0]) - 0.5
                  for sample in samples]

            # ys = list(sp.smooth(sp.remove_shots(ys)))
            # zs = list(sp.smooth(sp.remove_shots(zs)))

            # ys = list(sp.remove_shots(ys))
            # zs = list(sp.remove_shots(zs))
            ys = (np.array(ys) * 2.0) - 0.5
            zs = (np.array(zs) * 2.0) - 0.5
            ys = sp.smooth(ys, 20)
            zs = sp.smooth(zs, 20)

            # combo_yz = [((t_now - sample[0]) / 10.0, (sample[1][2] - RANGE[0]) / (RANGE[1] - RANGE[0]), ((sample[1][1] - RANGE[0]) / (RANGE[1] - RANGE[0])) - 0.5) for sample in list(samples)]
            combo_yz = [(ts[i], ys[i], zs[i]) for i in range(0, len(ys))]
            ctx.lines3D(combo_yz, color=colors[s], thickness=2.0)

    log.info("Processing...")
    total_time = ts[-1] - ts[0]
    total_samples = int(total_time / 60)     # once per minute

    log.debug("last_t %s" % ts[-1])
    log.debug("total_time %s" % total_time)
    log.debug("total_time_f %s" % strings.format_time(total_time))
    log.debug("total_samples %s" % total_samples)
    sample_length = total_time / total_samples
    log.debug("sample_length %s" % sample_length)

    signal = sp.resample(ts, hrs, total_samples)
    signal = sp.normalize(signal)
    signal = signal - sp.smooth(signal, size=100)   # flatten it out a bit
    threshold = np.average(signal) + (2 * np.std(signal))   # threshold is average plus 2 std deviation
    smoothed_signal = sp.smooth(signal, size=10)
    peaks, valleys = sp.detect_peaks(smoothed_signal, lookahead=10, delta=.001)
    max_peak = max(peaks, key=lambda p: p[1])
    log.info("max_peak %s" % max_peak)
    peaks = [peak for peak in peaks if peak[1] > threshold]

    def draw():
        from housepy import drawing
        log.info("--> done")
        log.info("Plotting...")
        ctx = drawing.Context()
        ctx.plot(signal)
        ctx.plot(smoothed_signal, stroke=(100, 0, 0))
        for peak in peaks:
Beispiel #16
0
def process_walk(walk_id, force=False):

    if not model.process_check(walk_id):
        log.error("Walk %s already processed" % walk_id)        
        if force:
            log.info("--> forcing...")
            model.remove_sequence(walk_id)
        else:
            return
    log.info("Processing walk %s" % walk_id)

    data = model.fetch_accels(walk_id)
    data = [(reading['t'], reading['x'], reading['y'], reading['z']) for reading in data]
    # log.debug(data)

    # let's sample every millisecond, so the time of the last reading is how many samples we need
    data = np.array(data)
    # log.debug(data)
    ts = data[:,0]
    total_samples = ts[-1]
    log.info("TOTAL SAMPLES %s (%fs)" % (total_samples, (total_samples / 1000.0)))

    # resample the values
    xs = sp.resample(ts, data[:,1], total_samples)
    ys = sp.resample(ts, data[:,2], total_samples)
    zs = sp.resample(ts, data[:,3], total_samples)

    # skip 0.5s for intro
    skip = 500
    xs = xs[skip:]
    ys = ys[skip:]
    zs = zs[skip:]
    total_samples -= skip


    # # for testing
    # log.debug(total_samples)
    # xs = xs[(30 * 1000):(50 * 1000)]
    # ys = ys[(30 * 1000):(50 * 1000)]
    # zs = zs[(30 * 1000):(50 * 1000)]
    # total_samples = len(xs)
    # log.debug(total_samples)


    # get 3d vector
    ds = np.sqrt(np.power(xs, 2) + np.power(ys, 2) + np.power(zs, 2))

    # normalize the values to a given range (this is gs, I believe)
    MIN = -20.0
    MAX = 20.0
    xs = (xs - MIN) / (MAX - MIN)
    ys = (ys - MIN) / (MAX - MIN)
    zs = (zs - MIN) / (MAX - MIN)
    ds = (ds - MIN) / (MAX - MIN)

    # low-pass filter
    ds = sp.smooth(ds, 300)
    # ds = sp.normalize(ds)
    # av = np.average(ds)

    # detect peaks
    # lookahead should be the minimum time of a step, maybe .3s, 300ms
    peaks, valleys = sp.detect_peaks(ds, lookahead=150, delta=0.10)
    if len(peaks) and peaks[0][0] == 0:
        peaks = peaks[1:]
    peaks = np.array(peaks)
    valleys = np.array(valleys)
    log.info("PEAKS %s" % len(peaks))
    log.info("VALLEYS %s" % len(valleys))

    if not (len(peaks) and len(valleys)):
        log.info("No footsteps detected")
        return

    peaks = valleys

    # start = np.min((np.min(peaks[:,0]), np.min(valleys[:,0])))
    start = np.min(peaks[:,0])
    log.debug("START %s" % start)
    xs = xs[start:]
    ys = ys[start:]
    zs = zs[start:]
    ds = ds[start:]
    peaks = [(peak[0] - start, peak[1]) for peak in peaks]
    valleys = [(valley[0] - start, valley[1]) for valley in valleys]
    total_samples -= start

    # get foot separator line
    fxs = [peak[0] for peak in peaks]
    fys = [peak[1] for peak in peaks]
    avs = np.average([peak[1] for peak in peaks])
    fxs.append(total_samples-1)
    fys.append(avs)
    fs = sp.resample(fxs, fys, total_samples)
    fs = sp.smooth(fs, 3000)

    # print out
    log.info("Saving sequence (%s)..." % walk_id)
    sequence = []
    for p, peak in enumerate(peaks):
        foot = 'right' if peak[1] > fs[peak[0]] else 'left'
        sequence.append((peak[0], foot))
    model.insert_sequence(walk_id, sequence)

    plot(walk_id, xs, ys, zs, ds, peaks, valleys, total_samples, fs)