Beispiel #1
0
             'dot_q1, dot_q2, dot_q3, dot_q4,' +
             'ddot_q1, ddot_q2, ddot_q3, ddot_q4\n')

    fm.write('Time[s], theta1, theta2, theta3, theta4,' +
             'thetad1, thetad2, thetad3, thetad4,' +
             'dot_theta1, dot_theta2, dot_theta3, dot_theta4,' +
             'ddot_theta1, ddot_theta2, ddot_theta3, ddot_theta4\n')

    fp.write('Time[s], X, Y, Xd, Yd, lambdax, lambday\n')

    for i in tqdm(range(ST)):

        time = i * sampling_time  # 時間の設定

        # オイラー法の定義
        q, dot_q, ddot_q = sl.EulerMethod(q, dot_q, ddot_q, sampling_time)

        theta, dot_theta, ddot_theta = sl.EulerMethod(theta, dot_theta,
                                                      ddot_theta,
                                                      sampling_time)

        # 慣性行列の定義
        mm = sl.moment_matrix_3dof(m, ll, lg, Inertia, q)

        # コリオリ項の定義
        H = sl.coriolis_item_3dof(m, ll, lg, Inertia, q, dot_q)

        # 重力項の定義
        g1, g2, g3, g4 = 0.0, 0.0, 0.0, 0.0
        G = [g1, g2, g3, g4]
Beispiel #2
0
    fl = open('2dof_simulation_link_data.csv', 'w')
    fm = open('2dof_simulation_motor_data.csv', 'w')

    fl.write('Time[s], q1, q2, qd1, qd2, dot_q1, dot_q2, ddot_q1, ddot_q2\n')
    fm.write(
        'Time[s], theta1, theta2, thetad1, thetad2, dot_theta1, dot_theta2, ddot_theta1, ddot_theta2\n'
    )

    for i in range(ST):

        time = i * sampling_time  # 時間の設定

        # オイラー法の定義
        q1, q2, dot_q1, dot_q2 = sl.EulerMethod(q1, q2, dot_q1, dot_q2,
                                                ddot_q1, ddot_q2,
                                                sampling_time)

        (theta1, theta2, dot_theta1,
         dot_theta2) = sl.EulerMethod(theta1, theta2, dot_theta1, dot_theta2,
                                      ddot_theta1, ddot_theta2, sampling_time)

        # 慣性行列の定義
        M1, M2, M3, M4 = sl.inertia_term_2dof(m1, m2, l1, l2, lg1, lg2, I1, I2,
                                              q2)
        # 逆行列の掃き出し
        Minv1, Minv2, Minv3, Minv4 = sl.invm_2dof(M1, M2, M3, M4)

        # コリオリ項の定義
        h1, h2 = sl.coriolis_item_2dof(m2, l1, lg2, q2, dot_q1, dot_q2)
Beispiel #3
0
    ST = int(sl.simulation_time(count_time, sampling_time))

    f = open('2dof_simulation.csv', 'w')

    Parameters = [
        'Time[s]', 'q1', 'q2', 'qd1', 'qd2', 'dot_q1', 'dot_q2', 'ddot_q1',
        'ddot_q2'
    ]
    f.write('Time[s], q1, q2, qd1, qd2, dot_q1, dot_q2, ddot_q1, ddot_q2\n')
    row_data = []

    for i in range(ST):

        time = i * sampling_time
        q1, q2, dot_q1, dot_q2 = sl.EulerMethod(q1, q2, dot_q1, dot_q2,
                                                ddot_q1, ddot_q2,
                                                sampling_time)

        M1, M2, M3, M4 = sl.inertia_term_2dof(m1, m2, l1, l2, lg1, lg2, I1, I2,
                                              q2)
        Minv1, Minv2, Minv3, Minv4 = sl.invm_2dof(M1, M2, M3, M4)

        h1, h2 = sl.coriolis_item_2dof(m2, l1, lg2, q2, dot_q1, dot_q2)

        G1, G2 = sl.gravity_item_2dof(m1, m2, l1, lg1, lg2, q1, q2, g)

        tau1 = sl.PIDcontrol(kp1, kv1, ki1, qd1, q1, dot_qd1, dot_q1, sum_q1)
        tau2 = sl.PIDcontrol(kp2, kv2, ki2, qd2, q2, dot_qd2, dot_q2, sum_q2)

        ddot_q1 = sl.calculate_angular_acceleration(Minv1, Minv2, tau1, tau2,
                                                    h1, h2, G1, G2)
    tauf_data = []

    # Time Parametas
    simulate_time = 3.0  # シミュレート時間
    sampling_time = 0.001  # サンプリングタイム
    time_log = []

    ST = int(sl.simulation_time(simulate_time, sampling_time))

    for j in range(200):
        tauf = 0.1 * j

        for i in tqdm(range(ST)):
            time = i * sampling_time  # 時間の設定

            q, dot_q, ddot_q = sl.EulerMethod(q, dot_q, ddot_q, sampling_time)
            #        theta, dot_theta, ddot_theta = sl.EulerMethod(theta, dot_theta,
            #                                                      ddot_theta,
            #                                                      sampling_time)

            #        tau = kp * (thetad2 - theta[0]) - kv * dot_theta[0]

            # 偏差と非線形弾性特性値の計算
            e = sl.difference_part(theta, q, Gear_ratio)
            K = sl.non_linear_item(k, e)

            # 各角加速度計算

            ddot_q[0] = (K[0] + tauf - D * dot_q[0]) / A
            #        ddot_theta[0] = (Gear_ratio * tau - K[0] - pow(Gear_ratio, 2) * B * dot_theta[0]) / pow(Gear_ratio, 2) / Mm